Analytical and numerical studies for chaotic dynamics of a duffing oscillator with a parametric force

被引:0
|
作者
Wang Yan-Qun [1 ]
Wu Qin
机构
[1] Hengyang Normal Univ, Dept Math, Hengyang 421008, Peoples R China
[2] Guangdong Med Coll, Sch Basic Med Sci, Dongguan 523808, Peoples R China
关键词
general solution; Melnikov function; period doubling; chaos;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The chaotic dynamics of a Duffing oscillator with a parametric force is investigated. By using the, direct perturbation technique, we analytically obtain the general solution of the 1st-order equation. Through the boundedness condition of the general solution we get the famous Melnikov function predicting the onset of chaos. When the parametric and external forces are strong, numerical simulations show that, increasing the amplitude of the parametric or external force can lead the system into chaos via period doubling.
引用
收藏
页码:477 / 480
页数:4
相关论文
共 50 条
  • [21] Design and Simulation of Controller for Chaotic Duffing Oscillator
    Liu, Meiju
    Liu, Jian
    Han, Fengyan
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION ICMS2010, VOL 5: APPLIED MATHEMATICS AND MATHEMATICAL MODELLING, 2010, : 193 - 196
  • [22] Bifurcation and chaos in the double-well Duffing-van der Pol oscillator: Numerical and analytical studies
    Venkatesan, A
    Lakshmanan, M
    PHYSICAL REVIEW E, 1997, 56 (06) : 6321 - 6330
  • [23] ANALYTICAL AND NUMERICAL INVESTIGATION ON THE DUFFING OSCILATOR SUBJECTED TO A POLYHARMONIC FORCE EXCITATION
    Stoyanov, Svetlin
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS-BULGARIA, 2015, 45 (01): : 3 - 16
  • [24] On Periodic Motions in a Parametric Hardening Duffing Oscillator
    Luo, Albert C. J.
    O'Connor, Dennis M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (01):
  • [25] MODEL-REFERENCE CONTROL OF REGULAR AND CHAOTIC DYNAMICS IN THE DUFFING-UEDA OSCILLATOR
    AGUIRRE, LA
    BILLINGS, SA
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1994, 41 (07): : 477 - 480
  • [26] Chaotic Dynamics of a Periodically Forced Duffing Oscillator with Cubic Quintic Septic Power Nonlinearities
    Remmi, S. K.
    Latha, M. M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (14):
  • [27] RIGOROUS STUDIES OF A DUFFING OSCILLATOR
    LEUNG, AYT
    JOURNAL OF SOUND AND VIBRATION, 1991, 149 (01) : 147 - 149
  • [28] Chaotic signal-induced dynamics of degenerate optical parametric oscillator
    Jun, Ma
    Wu-Yin, Jin
    Yan-Long, Li
    CHAOS SOLITONS & FRACTALS, 2008, 36 (02) : 494 - 499
  • [29] Dependence of lifetimes of chaotic transients in the weakly dissipative Duffing oscillator on numerical precision and external noise
    Paar, V
    Pavin, N
    PHYSICA A, 1997, 242 (1-2): : 166 - 174
  • [30] PERIODICALLY KICKED DUFFING OSCILLATOR AND NONATTRACTING CHAOTIC SETS
    FRANASZEK, M
    PHYSICAL REVIEW E, 1994, 49 (05): : 3927 - 3929