Analytical and numerical studies for chaotic dynamics of a duffing oscillator with a parametric force

被引:0
|
作者
Wang Yan-Qun [1 ]
Wu Qin
机构
[1] Hengyang Normal Univ, Dept Math, Hengyang 421008, Peoples R China
[2] Guangdong Med Coll, Sch Basic Med Sci, Dongguan 523808, Peoples R China
关键词
general solution; Melnikov function; period doubling; chaos;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The chaotic dynamics of a Duffing oscillator with a parametric force is investigated. By using the, direct perturbation technique, we analytically obtain the general solution of the 1st-order equation. Through the boundedness condition of the general solution we get the famous Melnikov function predicting the onset of chaos. When the parametric and external forces are strong, numerical simulations show that, increasing the amplitude of the parametric or external force can lead the system into chaos via period doubling.
引用
收藏
页码:477 / 480
页数:4
相关论文
共 50 条
  • [1] Analytical and Numerical Studies for Chaotic Dynamics of a Duffing Oscillator with a Parametric Force
    WANG Yan-Qun Department of Mathematics
    Communications in Theoretical Physics, 2007, 48 (09) : 477 - 480
  • [2] Chaotic dynamics of a Rayleigh-Duffing oscillator with periodically external and parametric excitations
    Zhou, Liangqiang
    Liu, Shanshan
    Chen, Fangqi
    PROCEEDINGS OF THE6TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, BIOTECHNOLOGY AND ENVIRONMENT (ICMMBE 2016), 2016, 83 : 286 - 292
  • [3] ANALYTICAL CONDITION FOR CHAOTIC BEHAVIOR OF THE DUFFING OSCILLATOR
    KAPITANIAK, T
    PHYSICS LETTERS A, 1990, 144 (6-7) : 322 - 324
  • [4] Chaotic Dynamics of a Duffing Oscillator Subjected to External and Nonlinear Parametric Excitations With Delayed Feedbacks
    Ding, Aijia
    Hu, Sengen
    Zhou, Liangqiang
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2024, 19 (04):
  • [5] Chaotic motions of a Duffing oscillator subjected to combined parametric and quasiperiodic excitation
    Tan, CA
    Kang, BS
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2001, 2 (04) : 353 - 364
  • [6] Effect of bounded noise on chaotic motion of duffing oscillator under parametric excitation
    Liu, WY
    Zhu, WQ
    Huang, ZL
    CHAOS SOLITONS & FRACTALS, 2001, 12 (03) : 527 - 537
  • [7] Role of asymmetries in the chaotic dynamics of the double-well Duffing oscillator
    V. Ravichandran
    S. Jeyakumari
    V. Chinnathambi
    S. Rajasekar
    M. A. F. Sanjuán
    Pramana, 2009, 72 : 927 - 937
  • [8] Role of asymmetries in the chaotic dynamics of the double-well Duffing oscillator
    Ravichandran, V.
    Jeyakumari, S.
    Chinnathambi, V.
    Rajasekar, S.
    Sanjuan, M. A. F.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 72 (06): : 927 - 937
  • [9] Analyzing the chaotic and stability behavior of a duffing oscillator excited by a sinusoidal external force
    Abohamer, Mk
    Amer, Ts
    Arab, A.
    Galal, Aa
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2024,
  • [10] Hopping of chaotic dynamics in a doubly resonant parametric oscillator
    Univ of Hyderabad, Hyderabad, India
    Pramana J Phys, 4 (389-398):