Hydrogen-rich syngas produced from the co-pyrolysis of municipal solid waste and wheat straw

被引:55
|
作者
Zhao Jun [1 ]
Wang Shuzhong [1 ]
Wu Zhiqiang [1 ]
Meng Haiyu [1 ]
Chen Lin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Minist Educ, Key Lab Thermo Fluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
关键词
Municipal solid waste; Biomass; Pyrolysis; Syngas; PLASTIC WASTE; RAPID PYROLYSIS; ALKALI-METAL; BIOMASS; YIELD; FUEL; WOOD; GASIFICATION; MICROWAVE; OXIDATION;
D O I
10.1016/j.ijhydene.2017.06.166
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The co-thermochemical conversion of Municipal Solid Waste (MSW) and biomass is a new environmental technology and can produce hydrogen-rich syngas. This study investigated the co-pyrolysis of MSW and wheat straw, using a drop-tube furnace experiment. Using a temperature range of 500 degrees C-1000 degrees C, the study assessed pyrolysis gas yield, product distribution, gas low heating value, and carbon conversion of co-pyrolysis MSW with different amounts of wheat straw. Adding wheat straw only slightly increases the gas yield and carbon conversion, but improved the carbon monoxide and carbon dioxide in the syngas. At an experimental temperature below 700 degrees C, adding wheat straw promoted the cracking reaction of hydrocarbon gas, generated by the pyrolysis of MSW. At a temperature of 600 degrees C, adding 25% wheat straw improved carbon conversion in the blended sample. This study provides a basis for the application of MSW and WS thermo-chemical conversion. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:19701 / 19708
页数:8
相关论文
共 50 条
  • [41] Hydrogen-rich gas from gasification of Portuguese municipal solid wastes
    Couto, Nuno
    Monteiro, Eliseu
    Silva, Valter
    Rouboa, Abel
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (25) : 10619 - 10630
  • [42] The effects of pore structures and functional groups on the catalytic performance of activated carbon catalysts for the co-pyrolysis of biomass and plastic into aromatics and hydrogen-rich syngas
    Lin, Xiaona
    Lei, Hanwu
    Wang, Chenxi
    Qian, Moriko
    Mateo, Wendy
    Chen, Xiaoyun
    Guo, Yadong
    Huo, Erguang
    RENEWABLE ENERGY, 2023, 202 : 855 - 864
  • [43] A novelty catalytic reforming of tire pyrolysis oil for hydrogen-rich syngas
    Wang, Fengchao
    Gao, Ningbo
    Quan, Cui
    Liu, Huacai
    Li, Weizhen
    Yuan, Hongyou
    Yin, Xiuli
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300
  • [44] Waste derived ash as catalysts for the pyrolysis-catalytic steam reforming of waste plastics for hydrogen-rich syngas production
    Li, Yukun
    Williams, Paul T.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 177
  • [45] Formation behavior of sulfur and chlorine during co-pyrolysis of stalk with municipal solid waste
    Ren, Qiang-Qiang
    Zhao, Chang-Sui
    Wu, Xin
    Liang, Cai
    Chen, Xiao-Ping
    Shen, Jie-Zhong
    Tang, Guo-Yong
    Wang, Zheng
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2009, 30 (08): : 1431 - 1433
  • [46] Effects of different combustible municipal solid waste components without/with additives on co-pyrolysis
    Fan, Yuyang
    Li, Yanji
    Yu, Mengzhu
    Yang, Tianhua
    Huang, Yaji
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2018, 40 (20) : 2379 - 2387
  • [47] Synergies in rate and extent of thermal decomposition of municipal solid waste by co-pyrolysis with microalgae
    Vuppaladadiyam, Arun Krishna
    Zhao, Ming
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [48] Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation
    Vidyadhar V. Gedam
    Iyyaswami Regupathi
    Natural Resources Research, 2012, 21 (1) : 75 - 82
  • [49] H2-rich syngas produced from steam gasification of municipal solid waste: a modeling approach
    Fu, Leijie
    Cao, Yan
    Du, Jiang
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2022, 24 (03) : 1001 - 1007
  • [50] H2-rich syngas produced from steam gasification of municipal solid waste: a modeling approach
    Leijie Fu
    Yan Cao
    Jiang Du
    Clean Technologies and Environmental Policy, 2022, 24 : 1001 - 1007