A part of ice nucleation protein exhibits the ice-binding ability

被引:45
|
作者
Kobashigawa, Y
Nishimiya, Y
Miura, K
Ohgiya, S
Miura, A
Tsuda, S
机构
[1] AIST, Funct Prot Res Grp, Res Inst Genome Based Biofactory, Sapporo, Hokkaido 0628517, Japan
[2] AIST, Express & Mol Regulat Res Grp, Res Inst Genome Based Biofactory, Sapporo, Hokkaido 0628517, Japan
[3] Hokkaido Univ, Grad Sch Sci, Div Biol Sci, Sapporo, Hokkaido 0600808, Japan
关键词
ice nucleation protein; antifreeze protein; ice-growth inhibition; Pseudomonas syringae;
D O I
10.1016/j.febslet.2005.01.056
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We generated a recombinant 96-residue polypeptide corresponding to a sequence Tyr(176)-Gly(273) of ice nucleation protein from Pseudomonas syringae (denoted INP96). INP96 exhibited an ability to shape an ice crystal, whose morphology is highly similar to the hexagonal-bipyramid generally identified for antifreeze protein. INP96 also showed a non-linear, concentration-dependent retardation of ice growth. Additionally, circular dichroism and NMR measurements suggested a local structural construction in INP96, which undergoes irreversible thermal denaturation. These data imply that a part of INP constructs a unique structure so as to interact with the ice crystal surfaces. (C) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1493 / 1497
页数:5
相关论文
共 50 条
  • [42] Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis
    Gruneberg, Audrey K.
    Graham, Laurie A.
    Eves, Robert
    Agrawal, Prashant
    Oleschuk, Richard D.
    Davies, Peter L.
    CRYOBIOLOGY, 2021, 99 : 28 - 39
  • [43] Ice-Binding Protein from Shewanella frigidimarinas Inhibits Ice Crystal Growth in Highly Alkaline Solutions
    Delesky, Elizabeth A.
    Frazier, Shane D.
    Wallat, Jaqueline D.
    Bannister, Kendra L.
    Heveran, Chelsea M.
    Srubar, Wil V., III
    POLYMERS, 2019, 11 (02)
  • [44] Identification of the ice-binding face of antifreeze protein from Tenebrio molitor
    Marshall, CB
    Daley, ME
    Graham, LA
    Sykes, BD
    Davies, PL
    FEBS LETTERS, 2002, 529 (2-3): : 261 - 267
  • [45] Effect of pH on the activity of ice-binding protein from Marinomonas primoryensis
    Delesky, Elizabeth A.
    Thomas, Patrick E.
    Charrier, Marimikel
    Cameron, Jeffrey C.
    Srubar, Wil V., III
    EXTREMOPHILES, 2021, 25 (01) : 1 - 13
  • [46] CLUSTERING OF ICE NUCLEATION PROTEIN CORRELATES WITH ICE NUCLEATION ACTIVITY
    MUELLER, GM
    WOLBER, PK
    WARREN, GJ
    CRYOBIOLOGY, 1990, 27 (04) : 416 - 422
  • [47] Microbial ice-binding structures: A review of their applications
    Uko, Mfoniso Peter
    Umana, Senyene Idorenyin
    Iwatt, Ifiok Joseph
    Udoekong, Nsikan Samuel
    Mgbechidinma, Chiamaka Linda
    Adie, Francisca Upekiema
    Akan, Otobong Donald
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 275
  • [48] Saturn-Shaped Ice Burst Pattern and Fast Basal Binding of an Ice-Binding Protein from an Antarctic Bacterial Consortium
    Kaleda, Aleksei
    Haleva, Lotem
    Sarusi, Guy
    Pinsky, Tova
    Mangiagalli, Marco
    Bar Dolev, Maya
    Lotti, Marina
    Nardini, Marco
    Braslavsky, Ido
    LANGMUIR, 2019, 35 (23) : 7337 - 7346
  • [49] Computationally efficient approach for the identification of ice-binding surfaces and how they bind ice
    Naullage, Pavithra M.
    Metya, Atanu K.
    Molinero, Valeria
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (17):
  • [50] Growth suppression of ice crystal basal face in the presence of a moderate ice-binding protein does not confer hyperactivity
    Bayer-Giraldi, Maddalena
    Sazaki, Gen
    Nagashima, Ken
    Kipfstuhl, Sepp
    Vorontsov, Dmitry A.
    Furukawa, Yoshinori
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (29) : 7479 - 7484