REDHEFFER-TYPE INEQUALITIES FOR GENERALIZED TRIGONOMETRIC FUNCTIONS

被引:0
|
作者
Ozawa, Shimpei [1 ]
Takeuchi, Shingo [1 ]
机构
[1] Shibaura Inst Technol, Dept Math Sci, Minuma Ku, 307 Fukasaku, Saitama, Saitama 3378570, Japan
来源
关键词
Redheffer's inequality; generalized trigonometric functions; p-Laplacian;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Famous Redheffer's inequality is generalized to a class of anti-periodic functions. We apply the novel inequality to the generalized trigono-metric functions and establish several Redheffer-type inequalities for these functions.
引用
收藏
页码:16 / 22
页数:7
相关论文
共 50 条
  • [31] Sharp Inequalities for Trigonometric Functions
    Yang, Zhen-Hang
    Jiang, Yun-Liang
    Song, Ying-Qing
    Chu, Yu-Ming
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [32] GENERALIZED TRIGONOMETRIC FUNCTIONS
    BURGOYNE, FD
    MATHEMATICS OF COMPUTATION, 1964, 18 (86) : 314 - +
  • [33] Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions
    Jun-Ling Sun
    Chao-Ping Chen
    Journal of Inequalities and Applications, 2016
  • [34] Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions
    Sun, Jun-Ling
    Chen, Chao-Ping
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [35] EXTENDED A CONSTANT PART OF REDHEFFER'S TYPE INEQUALITIES
    Nishizawa, Yusuke
    TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (01): : 79 - 83
  • [36] Nikol'skij-type and maximal inequalities for generalized trigonometric polynomials
    Renato Grande
    Paola Santucci
    manuscripta mathematica, 1999, 99 : 485 - 507
  • [37] Nikol'skij-type and maximal inequalities for generalized trigonometric polynomials
    Grande, R
    Santucci, P
    MANUSCRIPTA MATHEMATICA, 1999, 99 (04) : 485 - 507
  • [38] Some trigonometric extremal functions and the Erdos-Turan type inequalities
    Li, XJ
    Vaaler, JD
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1999, 48 (01) : 183 - 236
  • [39] EXPONENTIAL TRIGONOMETRIC CONVEX FUNCTIONS AND HERMITE-HADAMARD TYPE INEQUALITIES
    Kadakal, Mahir
    Iscan, Imdat
    Agarwal, Praveen
    Jleli, Mohamed
    MATHEMATICA SLOVACA, 2021, 71 (01) : 43 - 56
  • [40] Wilker and Huygens type inequalities for mixed trigonometric-hyperbolic functions
    Bagul, Yogesh J.
    Bhayo, Barkat A.
    Dhaigude, Ramkrishna M.
    Raut, Vinay M.
    TBILISI MATHEMATICAL JOURNAL, 2021, 14 (02) : 207 - 220