Oxide Nanoclusters on Ti3C2 MXenes to Deactivate Defects for Enhanced Lithium Ion Storage Performance

被引:16
|
作者
Hui, Xiaobin [1 ]
Zhao, Danyang [1 ]
Wang, Peng [1 ]
Di, Haoxiang [1 ]
Ge, Xiaoli [1 ]
Zhang, Peng [1 ]
Yin, Longwei [1 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
关键词
anodes; defects passivation; initial coulombic efficiency; lithium ion batteries; MXenes; ATOMIC-LAYER-DEPOSITION; TITANIUM CARBIDE MXENE; ANODE MATERIAL; 2-DIMENSIONAL TI3C2; BATTERY; CARBON; INTERCALATION; AL2O3; FILM; SEI;
D O I
10.1002/smll.202104439
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The commercialization of MXenes as anodes for lithium-ion batteries is largely impeded by low initial coulombic efficiency (ICE) and unfavorable cycling stability, which are closely associated with defects such as Ti vacancies (V-Ti) in Ti3C2 MXenes. Herein, an effective strategy is developed to deactivate V-Ti defects by in situ growing Al2O3 nanoclusters on MXenes to alleviate the irreversible electrolyte decomposition and Li dendrites formation trend induced by defects, improving ICE and cycling stability. Furthermore, it is revealed that excessively lithiophilic V-Ti defects would impede Li ions diffusion due to their strong adsorption, leading to a locally nonuniform Li flux to these "hot spots," setting scene for the formation of Li dendrites. The Al2O3 nanoclusters anchored on V-Ti sites can not only improve Li diffusion kinetics but also promote the homogeneous solid electrolyte interphase formation with small charge transfer resistance, achieving uniform Li deposition in a smaller overpotential without formation of Li dendrites. As expected, Ti3C2@Al2O3-11 electrode delivers a high ICE of 76.6% and an outstanding specific capacity of 285.5 mAh g(-1) after 500 cycles, which is much higher than that of pristine Ti3C2 sample. This work sheds light on modulating defects for high-performance energy storage materials.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties
    Liu, Fanfan
    Zhou, Aiguo
    Chen, Jinfeng
    Jin, Jia
    Zhou, Weijia
    Wang, Libo
    Hu, Qianku
    APPLIED SURFACE SCIENCE, 2017, 416 : 781 - 789
  • [42] 3D hollow MXene (Ti3C2)/reduced graphene oxide hybrid nanospheres for high-performance Li-ion storage
    Guo, Miao
    Zhong, Shulin
    Xu, Tian
    Huang, Yuqin
    Xia, Guanglin
    Zhang, Tengfei
    Yu, Xuebin
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (42) : 23841 - 23849
  • [43] SnS particles anchored on Ti3C2 nanosheets as high-performance anodes for lithium-ion batteries
    Wang, Ran-cheng
    Pan, Qing-lin
    Luo, Yu-hong
    Yan, Cheng
    He, Zhen-jiang
    Mao, Jing
    Dai, Kehua
    Wu, Xian-wen
    Zheng, Jun-chao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 893
  • [44] Construction of Ti3C2 MXene@C@SnS with layered rock stratum structure for high-performance lithium storage
    Tang, Hong
    Guo, Ronghui
    Jiang, Mengjin
    Zhang, Yue
    Lai, Xiaoxu
    Cui, Ce
    Xiao, Hongyan
    Jiang, Shouxiang
    Ren, Erhui
    Qin, Qin
    JOURNAL OF POWER SOURCES, 2020, 462
  • [45] Lithium storage properties of Ti3C2Tx(Tx= F,Cl,Br) MXenes
    Pengcheng Liu
    Peng Xiao
    Ming Lu
    Hui Wang
    Na Jin
    Zifeng Lin
    Chinese Chemical Letters, 2023, 34 (04) : 583 - 586
  • [46] Lithium storage properties of Ti3C2Tx (Tx = F, Cl, Br) MXenes
    Liu, Pengcheng
    Xiao, Peng
    Lu, Ming
    Wang, Hui
    Jin, Na
    Lin, Zifeng
    CHINESE CHEMICAL LETTERS, 2023, 34 (04)
  • [47] Effect of lithium and sodium ion adsorption on the electronic transport properties of Ti3C2 MXene
    Berdiyorov, G. R.
    APPLIED SURFACE SCIENCE, 2015, 359 : 153 - 157
  • [48] Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials
    Wu, Wenling
    Wei, Dan
    Zhu, Jianfeng
    Niu, Dongjuan
    Wang, Fen
    Wang, Lei
    Yang, Liuqing
    Yang, Panpan
    Wang, Chengwei
    CERAMICS INTERNATIONAL, 2019, 45 (06) : 7328 - 7337
  • [49] The Improvement in Hydrogen Storage Performance of MgH2 Enabled by Multilayer Ti3C2
    Wu, Zhaojie
    Fang, Jianhua
    Liu, Na
    Wu, Jiang
    Kong, Linglan
    MICROMACHINES, 2021, 12 (10)
  • [50] Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer
    Tang, Qing
    Zhou, Zhen
    Shen, Panwen
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (40) : 16909 - 16916