On Certain Exact Differential Subordinations Involving Convex Dominants

被引:1
|
作者
Kumar, S. Sivaprasad [1 ]
Banga, Shagun [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Math, Delhi 110042, India
关键词
Differential subordination; exact differential equation; convex functions; best dominant; STARLIKE;
D O I
10.1007/s00009-021-01895-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let h be a non-vanishing convex univalent function and p be an analytic function in D. We consider the differential subordination psi(i)(p(z), zp' (z)) < h(z) with the admissible functions psi(1) := (beta p(z)+gamma)(-alpha) ((beta p(z)+gamma)/beta(1-alpha) + zp' (z)) and psi(2) := 1/root gamma beta arctan (root beta/gamma p(1-alpha) (z)) + (1-alpha/beta p(2(1-alpha))(z)+gamma zp' (z)/p(alpha)(z). The objective of this paper is to find the dominants, preferably the best dominant (say q) of the solution of the above differential subordination satisfying psi(i)(q(z), nzq'(z)) = h(z). Furthermore, we show that psi(i)(q(z), nzq' (z)) = h(z) is an exact differential equation and q is a convex univalent function in D. In addition, we estimate the sharp lower bound of Re p for different choices of h and derive a univalence criterion for functions in H (class of analytic normalized functions) as an application to our results.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Briot-Bouquet Differential Subordinations for Analytic Functions Involving the Struve Function
    Cetinkaya, Asena
    Cotirla, Luminita-Ioana
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [22] ON SOME DIFFERENTIAL SUBORDINATIONS
    Nunokawa, Mamoru
    Sokol, Janusz
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (04) : 436 - 445
  • [23] AN APPLICATION OF DIFFERENTIAL SUBORDINATIONS
    OBRADOVIC, M
    OWA, S
    MATHEMATISCHE NACHRICHTEN, 1990, 147 : 61 - 64
  • [24] Some differential subordinations and fuzzy differential subordinations using generalized integral operator
    Naik, Uday H.
    Shaikh, Raisa M.
    Gophane, Machchhindra T.
    Wanas, Abbas K.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 830 - 842
  • [25] Some differential subordinations and fuzzy differential subordinations using generalized integral operator
    Naik, Uday H.
    Shaikh, Raisa M.
    Gophane, Machchhindra T.
    Wanas, Abbas K.
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 830 - 842
  • [26] Some differential subordinations and fuzzy differential subordinations using generalized integral operator
    Naik, Uday H.
    Shaikh, Raisa M.
    Gophane, Machchhindra T.
    Wanas, Abbas K.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 830 - 842
  • [27] NEW FUZZY DIFFERENTIAL SUBORDINATIONS
    Oros, Georgia Irina
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 229 - 240
  • [28] Differential subordinations and argument inequalities
    Liu, Jin-Lin
    Ahuja, Om P.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (08): : 1430 - 1436
  • [29] Differential Subordinations for Certain Meromorphically Multivalent Functions Defined by Dziok-Srivastava Operator
    Yang, Ying
    Tao, Yu-Qin
    Liu, Jin-Lin
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [30] On the Fekete-Szegö Problem for Certain Classes of (γ,δ)-Starlike and (γ,δ)-Convex Functions Related to Quasi-Subordinations
    Almutairi, Norah Saud
    Shahen, Awatef
    Catas, Adriana
    Darwish, Hanan
    SYMMETRY-BASEL, 2024, 16 (08):