Lattice Boltzmann scheme for diffusion on triangular grids

被引:0
|
作者
van der Sman, RGM [1 ]
机构
[1] Univ Wageningen & Res Ctr, Agrotechnol Res Inst, NL-6700 AA Wageningen, Netherlands
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we present a Lattice Boltzmann scheme for diffusion on it unstructured triangular grids. In this formulation of a LB for irregular grids there is no need for interpolation, which is required in other LB schemes on irregular grids. At the end of the propagation step the lattice gas particles arrive exactly at neighbouring lattice sites, as is the case in LB schemes on Bravais lattices. The scheme is constructed using the constraints that the moments of the equilibrium distribution equals that of the Maxwell-Boltzmann distribution. For a special choice of the relaxation parameter (omega = 1) we show that our LB scheme is identical to a cell centered Finite Volume scheme on an unstructured triangular grid.
引用
收藏
页码:1072 / 1081
页数:10
相关论文
共 50 条
  • [21] A generalised Lattice Boltzmann equation on unstructured grids
    Ubertini, Stefano
    Succi, Sauro
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 3 (02) : 342 - 356
  • [22] An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations
    Toelke, Jonas
    Freudiger, Soeren
    Krafczyk, Manfred
    COMPUTERS & FLUIDS, 2006, 35 (8-9) : 820 - 830
  • [23] On Triangular Lattice Boltzmann Schemes for Scalar Problems
    Dubois, Francois
    Lallemand, Pierre
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (03) : 649 - 670
  • [24] Lattice Boltzmann flux scheme for the convection-diffusion equation and its applications
    Hu, Yang
    Li, Decai
    Shu, Shi
    Niu, Xiaodong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (01) : 48 - 63
  • [25] A stable hybrid Roe scheme on triangular grids
    Phongthanapanich, Sutthisak
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (04) : 978 - 1000
  • [26] Improved axisymmetric lattice Boltzmann scheme
    Li, Q.
    He, Y. L.
    Tang, G. H.
    Tao, W. Q.
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [28] A Lattice Boltzmann scheme for semiconductor dynamics
    Succi, S
    Vergari, P
    VLSI DESIGN, 1998, 6 (1-4) : 137 - 140
  • [29] Application of lattice Boltzmann scheme to nanofluids
    Xuan, YM
    Li, Q
    Yao, ZP
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2004, 47 (02): : 129 - 140
  • [30] On a superconvergent lattice Boltzmann boundary scheme
    Dubois, Francois
    Lallemand, Pierre
    Tekitek, Mandi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (07) : 2141 - 2149