In contrast to most other galaxies, star formation rates in the Milky Way can be estimated directly from young stellar objects (YSOs). In the central molecular zone the star formation rate calculated from the number of YSOs with 24 mu m emission is up to an order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 mu m. However, we show that in some cases the main-sequence models can be marginally resolved at 24 mu m, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 mu m sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified "YSOs" to be at least 63%, which suggests that the star formation rate previously determined from YSOs is likely to be at least a factor of three too high.
机构:
Flatiron Inst, Ctr Computat Astrophys, New York, NY 10010 USAFlatiron Inst, Ctr Computat Astrophys, New York, NY 10010 USA
Jermyn, Adam S.
Anders, Evan H.
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, CIERA, Evanston, IL 60201 USAFlatiron Inst, Ctr Computat Astrophys, New York, NY 10010 USA
Anders, Evan H.
论文数: 引用数:
h-index:
机构:
Lecoanet, Daniel
Cantiello, Matteo
论文数: 0引用数: 0
h-index: 0
机构:
Flatiron Inst, Ctr Computat Astrophys, New York, NY 10010 USA
Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USAFlatiron Inst, Ctr Computat Astrophys, New York, NY 10010 USA