Automating deconvolution of heterogeneous bulk tumor genomic data

被引:0
|
作者
Roman, Theodore
Xiao, Brenda
Schwartz, Russell
机构
关键词
D O I
10.1158/1538-7445.AM2017-974
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
974
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Improved deconvolution of combined bulk and single-cell RNA-sequencing data
    Lei, Haoyun
    Guo, Xiaoyan A.
    Tao, Yifeng
    Ding, Kai
    Fu, Xuecong
    Oesterreich, Steffi
    Lee, Adrian V.
    Schwartz, Russell
    CANCER RESEARCH, 2022, 82 (12)
  • [42] An assessment of computational methods for estimating purity and clonality using genomic data derived from heterogeneous tumor tissue samples
    Yadav, Vinod Kumar
    De, Subhajyoti
    BRIEFINGS IN BIOINFORMATICS, 2015, 16 (02) : 232 - 241
  • [43] Heterogeneous data fusion for brain tumor classification
    Metsis, Vangelis
    Huang, Heng
    Andronesi, Ovidiu C.
    Makedon, Fillia
    Tzika, Aria
    ONCOLOGY REPORTS, 2012, 28 (04) : 1413 - 1416
  • [44] Deconvolution of tumor composition using partially available DNA methylation data
    He, Dingqin
    Chen, Ming
    Wang, Wenjuan
    Song, Chunhui
    Qin, Yufang
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [45] Deconvolution of tumor composition using partially available DNA methylation data
    Dingqin He
    Ming Chen
    Wenjuan Wang
    Chunhui Song
    Yufang Qin
    BMC Bioinformatics, 23
  • [46] Identification of Genomic Aberrations in Cancer Subclones from Heterogeneous Tumor Samples
    Xia, Hong
    Liu, Yuanning
    Wang, Minghui
    Li, Ao
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (03) : 679 - 685
  • [47] Automating Data Science
    De Bie, Tijl
    De Raedt, Luc
    Hernandez-Orallo, Jose
    Hoos, Holger H.
    Smyth, Padhraic
    Williams, Christopher K., I
    COMMUNICATIONS OF THE ACM, 2022, 65 (03) : 76 - 87
  • [48] Insights from deconvolution of cell subtype proportions enhance the interpretation of functional genomic data
    Kong, Yu
    Rastogi, Deepa
    Seoighe, Cathal
    Greally, John M.
    Suzuki, Masako
    PLOS ONE, 2019, 14 (04):
  • [49] PyGMQL: scalable data extraction and analysis for heterogeneous genomic datasets
    Nanni, Luca
    Pinoli, Pietro
    Canakoglu, Arif
    Ceri, Stefano
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [50] Integrating heterogeneous genomic data to accurately identify disease subtypes
    Ren, Xianwen
    Fu, Hua
    Jin, Qi
    BMC MEDICAL GENOMICS, 2015, 8