Energetic Basis of Single-Wall Carbon Nanotube Enantiomer Recognition by Single-Stranded DNA

被引:13
|
作者
Shankar, Akshaya [1 ]
Zheng, Ming [2 ,3 ]
Jagota, Anand [4 ,5 ]
机构
[1] Lehigh Univ, Dept Chem & Biomol Engn, Bethlehem, PA 18015 USA
[2] NIST, Mat Sci & Engn Div & Semicond, 100 Bur Dr, Gaithersburg, MD 20899 USA
[3] NIST, Dimens Metrol Div, 100 Bur Dr, Gaithersburg, MD 20899 USA
[4] Lehigh Univ, Dept Bioengn, Bethlehem, PA 18015 USA
[5] Lehigh Univ, Dept Chem & Biomol Engn, Bethlehem, PA 18015 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2017年 / 121卷 / 32期
基金
美国国家科学基金会;
关键词
DENSITY-GRADIENT ULTRACENTRIFUGATION; GEL COLUMN CHROMATOGRAPHY; MOLECULAR-DYNAMICS; CIRCULAR-DICHROISM; FORCE SPECTROSCOPY; GRAPHITE SURFACE; DRUG-DELIVERY; IN-VIVO; CHIRALITY; SEPARATION;
D O I
10.1021/acs.jpcc.7b05168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hybrids of Single-stranded DNA and single-walled carbon. nanotubes (SWCNts) have proven to be very successful in separating various chiralities and, recently, enantiomers of carboh nanotubes using aqueous two-phase separation: This technique sorts objects based on small differences in hydration energy, which is related to corresponding small differences in structure, Separation by handedness requires that a given ssDNA sequence adopt different structures: on :the two SWCNT enantiomers. Here we study :the physical basis of such selectivity using a, coarse-grained model to compute the energetics of ssDNA-wrapped. around an-SWCNT. Our Model suggests that difference by handedness of the SWCNT requires spontaneous twist of the ssDNA backbone. We also show that differences depend sensitively on the choice of DNA sequence.
引用
收藏
页码:17479 / 17487
页数:9
相关论文
共 50 条
  • [41] Quantized acoustic vibrations of single-wall carbon nanotube
    Raichura, A. (stroscio@uic.edu), 1600, American Institute of Physics Inc. (94):
  • [42] Quantized acoustic vibrations of single-wall carbon nanotube
    Raichura, A
    Dutta, M
    Stroscio, MA
    JOURNAL OF APPLIED PHYSICS, 2003, 94 (06) : 4060 - 4065
  • [43] Thermoelectric properties of single-wall carbon nanotube networks
    Hayashi, Daisuke
    Nakai, Yusuke
    Kyakuno, Haruka
    Hongo, Naoya
    Miyata, Yasumitsu
    Yanagi, Kazuhiro
    Maniwa, Yutaka
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (07)
  • [44] Electrochemical properties of single-wall carbon nanotube electrodes
    Barisci, JN
    Wallace, GG
    Chattopadhyay, D
    Papadimitrakopoulos, F
    Baughman, RH
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) : E409 - E415
  • [45] Nonlinear resonances of a single-wall carbon nanotube cantilever
    Kim, I. K.
    Lee, S. I.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 67 : 159 - 167
  • [46] Electron transport in single-wall carbon nanotube mats
    Shiraishi, M
    Ata, M
    STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES, 2002, 633 : 251 - 254
  • [47] Ambipolar single-wall carbon nanotube transistors and inverters
    Martel, R
    Derycke, V
    Avouris, P
    ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES, 2001, 591 : 543 - 547
  • [48] Wetting of single-wall carbon nanotube ropes and graphite
    Ulbricht, H
    Moos, G
    Hertel, T
    MOLECULAR NANOSTRUCTURES, 2003, 685 : 152 - 155
  • [49] Single-wall carbon nanotube colloids in polar solvents
    Shi, ZJ
    Lian, YF
    Zhou, XH
    Gu, ZN
    Zhang, YG
    Iijima, S
    Gong, QH
    Li, HD
    Zhang, SL
    CHEMICAL COMMUNICATIONS, 2000, (06) : 461 - 462
  • [50] A triple quantum dot in a single-wall carbon nanotube
    Grove-Rasmussen, K.
    Jorgensen, H. I.
    Hayashi, T.
    Lindelof, P. E.
    Fujisawa, T.
    NANO LETTERS, 2008, 8 (04) : 1055 - 1060