Scalable and accurate deep learning with electronic health records

被引:1223
|
作者
Rajkomar, Alvin [1 ,2 ]
Oren, Eyal [1 ]
Chen, Kai [1 ]
Dai, Andrew M. [1 ]
Hajaj, Nissan [1 ]
Hardt, Michaela [1 ]
Liu, Peter J. [1 ]
Liu, Xiaobing [1 ]
Marcus, Jake [1 ]
Sun, Mimi [1 ]
Sundberg, Patrik [1 ]
Yee, Hector [1 ]
Zhang, Kun [1 ]
Zhang, Yi [1 ]
Flores, Gerardo [1 ]
Duggan, Gavin E. [1 ]
Irvine, Jamie [1 ]
Quoc Le [1 ]
Litsch, Kurt [1 ]
Mossin, Alexander [1 ]
Tansuwan, Justin [1 ]
Wang, De [1 ]
Wexler, James [1 ]
Wilson, Jimbo [1 ]
Ludwig, Dana [2 ]
Volchenboum, Samuel L. [3 ]
Chou, Katherine [1 ]
Pearson, Michael [1 ]
Madabushi, Srinivasan [1 ]
Shah, Nigam H. [4 ]
Butte, Atul J. [2 ]
Howell, Michael D. [1 ]
Cui, Claire [1 ]
Corrado, Greg S. [1 ]
Dean, Jeffrey [1 ]
机构
[1] Google Inc, Mountain View, CA 94043 USA
[2] Univ Calif San Francisco, San Francisco, CA 94143 USA
[3] Univ Chicago Med, Chicago, IL USA
[4] Stanford Univ, Stanford, CA 94305 USA
来源
NPJ DIGITAL MEDICINE | 2018年 / 1卷
关键词
RISK PREDICTION MODELS; EARLY WARNING SCORE; BIG DATA; HOSPITAL READMISSION; MEDICAL-RECORDS; VALIDATION; CARE; INPATIENT; ANALYTICS; PATIENT;
D O I
10.1038/s41746-018-0029-1
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient's record. We propose a representation of patients' entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93-0.94), 30-day unplanned readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and all of a patient's final discharge diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases. We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the patient's chart.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The application of unsupervised deep learning in predictive models using electronic health records
    Wang, Lei
    Tong, Liping
    Davis, Darcy
    Arnold, Tim
    Esposito, Tina
    BMC MEDICAL RESEARCH METHODOLOGY, 2020, 20 (01)
  • [22] Deep representation learning of electronic health records to unlock patient stratification at scale
    Landi, Isotta
    Glicksberg, Benjamin S.
    Lee, Hao-Chih
    Cherng, Sarah
    Landi, Giulia
    Danieletto, Matteo
    Dudley, Joel T.
    Furlanello, Cesare
    Miotto, Riccardo
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [23] Predicting hypertension onset from longitudinal electronic health records with deep learning
    Datta, Suparno
    Morassi Sasso, Ariane
    Kiwit, Nina
    Bose, Subhronil
    Nadkarni, Girish
    Miotto, Riccardo
    Boettinger, Erwin P.
    JAMIA OPEN, 2022, 5 (04)
  • [24] Treatment effect prediction with adversarial deep learning using electronic health records
    Jiebin Chu
    Wei Dong
    Jinliang Wang
    Kunlun He
    Zhengxing Huang
    BMC Medical Informatics and Decision Making, 20
  • [25] Deep learning predicts extreme preterm birth from electronic health records
    Gao, Cheng
    Osmundson, Sarah
    Edwards, Digna R. Velez
    Jackson, Gretchen Purcell
    Malin, Bradley A.
    Chen, You
    JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 100
  • [26] Deep Learning Prediction of Mild Cognitive Impairment using Electronic Health Records
    Fouladvand, Sajjad
    Mielke, Michelle M.
    Vassilaki, Maria
    St Sauver, Jennifer
    Petersen, Ronald C.
    Sohn, Sunghwan
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 799 - 806
  • [27] Federated Learning for Electronic Health Records
    Dang, Trung Kien
    Lan, Xiang
    Weng, Jianshu
    Feng, Mengling
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (05)
  • [28] Predicting Cardiovascular Health Trajectories in Time-series Electronic Health Records With Deep Learning
    Guo, Aixia
    Foraker, Randi E.
    CIRCULATION, 2019, 140
  • [29] Marrying Medical Domain Knowledge With Deep Learning on Electronic Health Records: A Deep Visual Analytics Approach
    Li, Rui
    Yin, Changchang
    Yang, Samuel
    Qian, Buyue
    Zhang, Ping
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (09)
  • [30] Application of Basic Epidemiologic Principles and Electronic Health Records in a Deep Learning Prediction Model
    Cho, Soo Ick
    Lee, Dongheon
    Jo, Seong Jin
    JAMA DERMATOLOGY, 2020, 156 (04) : 473 - +