Computing Steiner Minimum Trees in Hamming Metric

被引:7
|
作者
Althaus, Ernst [1 ]
Naujoks, Rouven [2 ]
机构
[1] Univ Henri Poincare, LORIA, Vandoeuvre Les Nancy, France
[2] Max Planck Inst Informat, Saarbrucken, Germany
关键词
D O I
10.1145/1109557.1109578
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Computing Steiner minimum trees in Hamming metric is a well studied problem that has applications in several fields of science such as computational linguistics and computational biology. Among all methods for finding such trees, algorithms using variations of a branch and bound method developed by Penny and Hendy have been the fastest for more than 20 years. In this paper we describe a new pruning approach that is superior to previous methods and its implementation.
引用
收藏
页码:172 / +
页数:3
相关论文
共 50 条
  • [21] Grade of service euclidean Steiner minimum trees
    Xue, GL
    Lin, GH
    Du, DZ
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 6: CIRCUITS ANALYSIS, DESIGN METHODS, AND APPLICATIONS, 1999, : 182 - 185
  • [22] Computing Optimal Steiner Trees in Polynomial Space
    Fedor V. Fomin
    Fabrizio Grandoni
    Dieter Kratsch
    Daniel Lokshtanov
    Saket Saurabh
    Algorithmica, 2013, 65 : 584 - 604
  • [23] Computing Euclidean Steiner trees over segments
    Althaus, Ernst
    Rauterberg, Felix
    Ziegler, Sarah
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2020, 8 (3-4) : 309 - 325
  • [24] Computing Optimal Steiner Trees in Polynomial Space
    Fomin, Fedor V.
    Grandoni, Fabrizio
    Kratsch, Dieter
    Lokshtanov, Daniel
    Saurabh, Saket
    ALGORITHMICA, 2013, 65 (03) : 584 - 604
  • [25] k-Steiner-minimal-trees in metric spaces
    Cieslik, D.
    Discrete Mathematics, 1999, 208-209 : 119 - 124
  • [26] k-Steiner-minimal-trees in metric spaces
    Cieslik, D
    DISCRETE MATHEMATICS, 1999, 208 : 119 - 124
  • [27] STEINER TREES, PARTIAL 2-TREES, AND MINIMUM IFI NETWORKS
    WALD, JA
    COLBOURN, CJ
    NETWORKS, 1983, 13 (02) : 159 - 167
  • [28] Minimum Steiner trees on a set of concyclic points and their center
    Whittle, David
    Brazil, Marcus
    Grossman, Peter Alexander
    Rubinstein, Joachim Hyam
    Thomas, Doreen A.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2022, 29 (04) : 2201 - 2225
  • [29] Approximating Minimum Steiner Point Trees in Minkowski Planes
    Brazil, M.
    Ras, C. J.
    Thomas, D. A.
    NETWORKS, 2010, 56 (04) : 244 - 254
  • [30] Grade of Service Steiner Minimum Trees in the Euclidean plane
    Xue, G
    Lin, GH
    Du, DZ
    ALGORITHMICA, 2001, 31 (04) : 479 - 500