Computing Steiner Minimum Trees in Hamming Metric

被引:7
|
作者
Althaus, Ernst [1 ]
Naujoks, Rouven [2 ]
机构
[1] Univ Henri Poincare, LORIA, Vandoeuvre Les Nancy, France
[2] Max Planck Inst Informat, Saarbrucken, Germany
关键词
D O I
10.1145/1109557.1109578
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Computing Steiner minimum trees in Hamming metric is a well studied problem that has applications in several fields of science such as computational linguistics and computational biology. Among all methods for finding such trees, algorithms using variations of a branch and bound method developed by Penny and Hendy have been the fastest for more than 20 years. In this paper we describe a new pruning approach that is superior to previous methods and its implementation.
引用
下载
收藏
页码:172 / +
页数:3
相关论文
共 50 条
  • [1] On the low-dimensional Steiner minimum tree problem in Hamming metric
    Althaus, Ernst
    Kupilas, Joschka
    Naujoks, Rouven
    THEORETICAL COMPUTER SCIENCE, 2013, 505 : 2 - 10
  • [2] On the Low-Dimensional Steiner Minimum Tree Problem in Hamming Metric
    Althaus, Ernst
    Kupilas, Joschka
    Naujoks, Rouven
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2011, 2011, 6648 : 308 - 319
  • [3] A polylogarithmic approximation for computing non-metric terminal Steiner trees
    Gamzu, Iftah
    Segev, Danny
    INFORMATION PROCESSING LETTERS, 2010, 110 (18-19) : 826 - 829
  • [4] Approximation of Steiner Minimum Trees in Euclidean Planar Graphs Using Euclidian Steiner Minimum Trees
    Zenker, Bjoern
    20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 931 - 932
  • [5] On Steiner trees and minimum spanning trees in hypergraphs
    Polzin, T
    Daneshmand, SV
    OPERATIONS RESEARCH LETTERS, 2003, 31 (01) : 12 - 20
  • [6] Approximations for Steiner Trees with Minimum Number of Steiner Points
    DONGHUI CHEN
    DING-ZHU DU
    XIAO-DONG HU
    GUO-HUI LIN
    LUSHENG WANG
    GUOLIANG XUE
    Journal of Global Optimization, 2000, 18 : 17 - 33
  • [7] Approximations for Steiner trees with minimum number of Steiner points
    Chen, DH
    Du, DZ
    Hu, XD
    Lin, GH
    Wang, LS
    Xue, GL
    THEORETICAL COMPUTER SCIENCE, 2001, 262 (1-2) : 83 - 99
  • [8] Approximations for Steiner trees with minimum number of Steiner points
    Chen, DG
    Du, DZ
    Hu, XD
    Lin, GH
    Wang, LS
    Xue, GL
    JOURNAL OF GLOBAL OPTIMIZATION, 2000, 18 (01) : 17 - 33
  • [9] Dynamic programming for minimum steiner trees
    Fuchs, B.
    Kern, W.
    Moelle, D.
    Richter, S.
    Rossmanith, Peter
    Wang, X.
    THEORY OF COMPUTING SYSTEMS, 2007, 41 (03) : 493 - 500
  • [10] ON BETTER HEURISTICS FOR STEINER MINIMUM TREES
    DU, DZ
    ZHANG, YJ
    MATHEMATICAL PROGRAMMING, 1992, 57 (02) : 193 - 202