Improving microRNA target prediction with gene expression profiles

被引:18
|
作者
Ovando-Vazquez, Cesare [1 ]
Lepe-Soltero, Daniel [1 ]
Abreu-Goodger, Cei [1 ]
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Unidad Genom Avanzada Langebio, Guanajuato 36821, Mexico
来源
BMC GENOMICS | 2016年 / 17卷
关键词
microRNA target prediction; Support Vector Machine; Gene expression profiles; Biological context; microRNA perturbation experiments; INTEGRATIVE ANALYSIS; RNA-SEQ; TOOLS; IDENTIFICATION; REPRESSION; MIR-29B; SHOWS;
D O I
10.1186/s12864-016-2695-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Mammalian genomes encode for thousands of microRNAs, which can potentially regulate the majority of protein-coding genes. They have been implicated in development and disease, leading to great interest in understanding their function, with computational methods being widely used to predict their targets. Most computational methods rely on sequence features, thermodynamics, and conservation filters; essentially scanning the whole transcriptome to predict one set of targets for each microRNA. This has the limitation of not considering that the same microRNA could have different sets of targets, and thus different functions, when expressed in different types of cells. Results: To address this problem, we combine popular target prediction methods with expression profiles, via machine learning, to produce a new predictor: TargetExpress. Using independent data from microarrays and high-throughput sequencing, we show that TargetExpress outperforms existing methods, and that our predictions are enriched in functions that are coherent with the added expression profile and literature reports. Conclusions: Our method should be particularly useful for anyone studying the functions and targets of miRNAs in specific tissues or cells. TargetExpress is available at: http://targetexpress.ceiabreulab.org/.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A paradigm for class prediction using gene expression profiles
    Radmacher, MD
    McShane, LM
    Simon, R
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (03) : 505 - 511
  • [42] MicroRNA Target Prediction and Validation
    Ritchie, William
    Rasko, John E. J.
    Flamant, Stephane
    MICRORNA CANCER REGULATION: ADVANCED CONCEPTS, BIOINFORMATICS AND SYSTEMS BIOLOGY TOOLS, 2013, 774 : 39 - 53
  • [43] Global correlation analysis for microRNA and gene expression profiles in human obesity
    Li, Jiayu
    Zhou, Changyu
    Li, Jiarui
    Su, Ziyuan
    Sang, Haiyan
    Jia, Erna
    Si, Daoyuan
    PATHOLOGY RESEARCH AND PRACTICE, 2015, 211 (05) : 361 - 368
  • [44] Microrna Expression Profiles In Emphysema
    Tedrow, J.
    Juan-Guardela, B.
    Pandit, K.
    Gur, D.
    Leader, J. K.
    Landreneau, R.
    Schwartz, D. A.
    Geraci, M. W.
    Quackenbush, J.
    Correll, M.
    Richards, T.
    Chensny, L.
    Spira, A.
    Sciurba, F. C.
    Kaminski, N.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2011, 183
  • [45] microRNA expression profiles in ependymoma
    Costa, Fabricio
    Bischof, Jared
    Wang, Min
    Sredni, Simone
    Rajaram, Veena
    Xie, Hehuang
    Tomita, Tadanori
    Goldman, Stewart
    Bonaldo, Maria De Fatima
    Soares, Marcelo
    CANCER RESEARCH, 2009, 69
  • [46] miR-TV: an interactive microRNA Target Viewer for microRNA and target gene expression interrogation for human cancer studies
    Pan, Chao-Yu
    Lin, Wen-Chang
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2020,
  • [47] Integrated Analysis of MicroRNA (miRNA) and mRNA Profiles Reveals Reduced Correlation between MicroRNA and Target Gene in Cancer
    Li, Xingsong
    Yu, Xiaokang
    He, Yuting
    Meng, Yuhuan
    Liang, Jinsheng
    Huang, Lizhen
    Du, Hongli
    Wang, Xueping
    Liu, Wanli
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [48] MicroRNA function can be reversed by altering target gene expression levels
    Svoronos, Alexander A.
    Campbell, Stuart G.
    Engelman, Donald M.
    ISCIENCE, 2021, 24 (09)
  • [49] MICRORNA DIFFERENT EXPRESSION AND THEIR TARGET GENE IN BONE TISSUE OF AGING MOUSE
    Tan, J.
    Qin, H.
    Cheng, Z. L.
    Zhang, X.
    Huang, H. S.
    Lin, Y. J.
    Lin, J. M.
    Hu, Q. H.
    Li, M.
    Tan, H. T.
    Jing, L.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 122 : 13 - 13
  • [50] Differential microRNA expression profiling and target gene prediction in the muscle tissues of clenbuterol-fed Chinese miniature swine
    Tian, M.
    He, X.
    Wang, W.
    Liu, D.
    Meng, Q.
    ACTA AGRICULTURAE SCANDINAVICA SECTION A-ANIMAL SCIENCE, 2017, 67 (1-2): : 9 - 14