L2 stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods

被引:59
|
作者
Liu, Yingjie [1 ]
Shu, Chi-Wang [2 ]
Tadmor, Eitan [3 ,4 ]
Zhang, Mengping [5 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Univ Maryland, Inst Phys Sci & Technol, Dept Math, College Pk, MD 20742 USA
[4] Univ Maryland, CSCAMM, College Pk, MD 20742 USA
[5] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2008年 / 42卷 / 04期
关键词
D O I
10.1051/m2an:2008018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove stability and derive error estimates for the recently introduced central discontinuous Galerkin method, in the context of linear hyperbolic equations with possibly discontinuous solutions. A comparison between the central discontinuous Galerkin method and the regular discontinuous Galerkin method in this context is also made. Numerical experiments are provided to validate the quantitative conclusions from the analysis.
引用
收藏
页码:593 / 607
页数:15
相关论文
共 50 条
  • [31] Analysis and Entropy Stability of the Line-Based Discontinuous Galerkin Method
    Will Pazner
    Per-Olof Persson
    Journal of Scientific Computing, 2019, 80 : 376 - 402
  • [32] Local discontinuous Galerkin method combined with the L2 formula for the time fractional Cable model
    Minghui Song
    Jinfeng Wang
    Yang Liu
    Hong Li
    Journal of Applied Mathematics and Computing, 2022, 68 : 4457 - 4478
  • [33] Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations
    Yakovlev, Sergey
    Xu, Liwei
    Li, Fengyan
    JOURNAL OF COMPUTATIONAL SCIENCE, 2013, 4 (1-2) : 80 - 91
  • [34] OPTIMAL ERROR ESTIMATES OF THE SEMIDISCRETE CENTRAL DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS
    Liu, Yong
    Shu, Chi-Wang
    Zhang, Mengping
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 520 - 541
  • [35] Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem
    Paola F. Antonietti
    Blanca Ayuso de Dios
    Ilario Mazzieri
    Alfio Quarteroni
    Journal of Scientific Computing, 2016, 68 : 143 - 170
  • [36] Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem
    Antonietti, Paola F.
    de Dios, Blanca Ayuso
    Mazzieri, Ilario
    Quarteroni, Alfio
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 143 - 170
  • [37] Part III Discontinuous Galerkin Methods: General Approach and Stability
    Shu, Chi-Wang
    NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, : 149 - +
  • [38] New formulations and numerical analysis of discontinuous Galerkin methods
    Dutra do Carmo, Eduardo Gomes
    Celani Duarte, Andre Vinicius
    COMPUTATIONAL & APPLIED MATHEMATICS, 2002, 21 (03): : 661 - 715
  • [39] Dispersion analysis of plane wave discontinuous Galerkin methods
    Gittelson, Claude J.
    Hiptmair, Ralf
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 98 (05) : 313 - 323
  • [40] Stability of Overintegration Methods for Nodal Discontinuous Galerkin Spectral Element Methods
    Kopriva, David A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) : 426 - 442