Semiparametric model averaging prediction: a Bayesian approach

被引:2
|
作者
Wang, Jingli [1 ]
Li, Jialiang [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, 6 Sci Dr 2, Singapore 117546, Singapore
关键词
functional prior; Markov chain Monte Carlo; model aggregation; New Zealand population study; scleroderma treatment; spline basis; ADAPTIVE REGRESSION; GRAPHICAL MODELS; SELECTION; SPLINES;
D O I
10.1111/anzs.12249
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a novel model averaging method to construct a prediction function in semi-parametric form. The weighted sum of candidate semi-parametric models is taken as a prediction of the mean response. Marginal non-parametric regression models are approximated by spline basis functions and we apply a Bayesian Monte Carlo approach to fit such models. The optimal model weight parameters are estimated by minimising the least squares criterion with an explicit form. We implement our method in extensive simulation studies and illustrate its use with two real medical data examples. Our methods are demonstrated to be more accurate than both classical parametric model averaging methods and existing semi-parametric regression models.
引用
收藏
页码:407 / 422
页数:16
相关论文
共 50 条
  • [1] Semiparametric GARCH via Bayesian Model Averaging
    Chen, Wilson Ye
    Gerlach, Richard H.
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (02) : 437 - 452
  • [2] Semiparametric model averaging prediction for dichotomous response
    Fang, Fang
    Li, Jialiang
    Xia, Xiaochao
    [J]. JOURNAL OF ECONOMETRICS, 2022, 229 (02) : 219 - 245
  • [3] Firm Default Prediction: A Bayesian Model-Averaging Approach
    Traczynski, Jeffrey
    [J]. JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 2017, 52 (03) : 1211 - 1245
  • [4] AdaBoost Semiparametric Model Averaging Prediction for Multiple Categories
    Li, Jialiang
    Lv, Jing
    Wan, Alan T. K.
    Liao, Jun
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 495 - 509
  • [5] Varying-coefficient semiparametric model averaging prediction
    Li, Jialiang
    Xia, Xiaochao
    Wong, Weng Kee
    Nott, David
    [J]. BIOMETRICS, 2018, 74 (04) : 1417 - 1426
  • [6] A new approach for Bayesian model averaging
    TIAN XiangJun1
    2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics
    3 Nansen-Zhu International Research Centre
    4 Meterological Bureau of Xi’an City
    [J]. Science China Earth Sciences, 2012, 55 (08) : 1336 - 1344
  • [7] A new approach for Bayesian model averaging
    Tian XiangJun
    Xie ZhengHui
    Wang AiHui
    Yang XiaoChun
    [J]. SCIENCE CHINA-EARTH SCIENCES, 2012, 55 (08) : 1336 - 1344
  • [8] A new approach for Bayesian model averaging
    XiangJun Tian
    ZhengHui Xie
    AiHui Wang
    XiaoChun Yang
    [J]. Science China Earth Sciences, 2012, 55 : 1336 - 1344
  • [9] A semiparametric Bayesian approach to the random effects model
    Kleinman, KP
    Ibrahim, JG
    [J]. BIOMETRICS, 1998, 54 (03) : 921 - 938
  • [10] Bayesian model averaging for river flow prediction
    Paul J. Darwen
    [J]. Applied Intelligence, 2019, 49 : 103 - 111