Fibrillized peptide microgels for cell encapsulation and 3D cell culture

被引:49
|
作者
Tian, Ye F. [1 ,3 ]
Devgun, Jason M. [1 ]
Collier, Joel H. [1 ,2 ]
机构
[1] Univ Chicago, Dept Surg, Div Res, Chicago, IL 60637 USA
[2] Univ Chicago, Div Biol Sci, Comm Mol Med, Chicago, IL 60637 USA
[3] IIT, Dept Biomed Engn, Chicago, IL 60616 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
MESENCHYMAL STEM-CELLS; HYDROGELS; DESIGN; SCAFFOLDS;
D O I
10.1039/c1sm05504f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the advantages of materials produced by self-assembly is that in principle they can be formed in any given container to produce materials of predetermined shapes and sizes. Here, we developed a method for triggering peptide self-assembly within the aqueous phase of water-in-oil emulsions to produce spherical microgels composed of fibrillized peptides. Size control over the microgels was achieved by specification of blade type, speed, and additional shear steps in the emulsion process. Microgels constructed in this way could then be embedded within other self-assembled peptide matrices by mixing pre-formed microgels with un-assembled peptides and inducing gelation of the entire composite, offering a route towards multi-peptide materials with micron-scale domains of different peptide formulations. The gels themselves were cytocompatible, as was the microgel fabrication procedure, enabling the encapsulation of NIH 3T3 fibroblasts and C3H10T-1/2 mouse pluripotent stem cells with good viability.
引用
收藏
页码:6005 / 6011
页数:7
相关论文
共 50 条
  • [41] Bioprintable, Stiffness-Tunable Collagen-Alginate Microgels for Increased Throughput 3D Cell Culture Studies
    Ort, Carley
    Chen, Yimai
    Ghagre, Ajinkya
    Ehrlicher, Allen
    Moraes, Christopher
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2021, 7 (06): : 2814 - 2822
  • [42] CHALLENGES IN 3D CELL CULTURE: VALIDATION OF CELL VIABILITY ASSAYS IN 3D BRAIN TUMOUR MODEL
    Vaezzadeh, Mahsa
    Heng, Benjamin
    Guller, Anna
    Guillemin, Gilles J.
    Nadort, Annemarie
    TISSUE ENGINEERING PART A, 2022, 28 : S620 - S621
  • [43] Visualizing collagen proteolysis by peptide hybridization: From 3D cell culture to in vivo imaging
    Bennink, Lucas L.
    Li, Yang
    Kim, Bumjin
    Shin, Ik Jae
    San, Boi Hoa
    Zangari, Maurizio
    Yoon, Donghoon
    Yu, S. Michael
    BIOMATERIALS, 2018, 183 : 67 - 76
  • [44] Exploiting Peptide Self-Assembling Hydrogels as a Tunable 3D Scaffold for Cell Culture
    Workman, V. L.
    Miller, A. F.
    Saiani, A.
    TISSUE ENGINEERING PART A, 2015, 21 : S153 - S153
  • [45] Polyaniline Functionalized Peptide Self-Assembled Conductive Hydrogel for 3D Cell Culture
    Li, Jieling
    Xue, Yan
    Wang, Anhe
    Tian, Shaonan
    Li, Qi
    Bai, Shuo
    GELS, 2022, 8 (06)
  • [46] Cell polarity and cell division is controlled by polymeric 3D cell culture scaffolds
    Greiner, A. M.
    Jaggy, M.
    Scheiwe, A.
    Bastmeryer, M.
    MOLECULAR BIOLOGY OF THE CELL, 2013, 24
  • [47] 3D BIOPRINTED DOUBLE NETWORK HYDROGELS TO SUPPORT CELL ENCAPSULATION
    Amaral, Aderito J. R.
    Gaspar, Vitor M.
    Lavrador, Pedro
    Mano, Joao F.
    TISSUE ENGINEERING PART A, 2022, 28 : S73 - S73
  • [48] 3D PRINTING FOR MICROGEL-BASED LIVER CELL ENCAPSULATION
    O'Connor, Jonathan S.
    Kim, Heesoo
    Gwag, Eunheui
    Abelmann, Leon
    Sung, Baeckkyoung
    Manz, Andreas
    2021 34TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2021), 2021, : 1023 - 1026
  • [49] Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation
    Paez, Julieta I.
    Farrukh, Aleeza
    Valbuena-Mendoza, Rocio
    Wlodarczyk-Biegun, Malgorzata K.
    del Campo, Aranzazu
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) : 8062 - 8072
  • [50] Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution
    Schwartz, Rachel
    Malpica, Matthew
    Thompson, Gary L.
    Miri, Amir K.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 103