Binary Plane Partitions for Disjoint Line Segments

被引:3
|
作者
Toth, Csaba D. [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Binary space partitions; Line segments; SPACE PARTITIONS; FAT RECTANGLES; BSP TREES; SCENES; RAY;
D O I
10.1007/s00454-011-9341-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A binary space partition (BSP) for a set of disjoint objects in Euclidean space is a recursive decomposition where each step partitions the space (and possibly some of the objects) along a hyperplane and recurses on the objects clipped in each of the two open half-spaces. The size of a BSP is defined as the number of resulting fragments of the input objects. It is shown that every set of n disjoint line segments in the plane admits a BSP of size O(nlog n/log log n). This bound is the best possible.
引用
收藏
页码:617 / 646
页数:30
相关论文
共 50 条
  • [11] A Note on Binary Plane Partitions
    Discrete & Computational Geometry, 2003, 30 : 3 - 16
  • [12] A note on binary plane partitions
    Tóth, CD
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (01) : 3 - 16
  • [13] Location game on disjoint line segments
    Marcin Dziubiński
    International Journal of Game Theory, 2011, 40 : 231 - 262
  • [14] Location game on disjoint line segments
    Dziubinski, Marcin
    INTERNATIONAL JOURNAL OF GAME THEORY, 2011, 40 (02) : 231 - 262
  • [15] Counting disjoint 2-partitions for points in the plane
    Chang, F. H.
    Guo, J. Y.
    Hwang, F. K.
    Lee, J. S.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (16) : 2087 - 2092
  • [16] Alternating paths through disjoint line segments
    Hoffmann, M
    Tóth, CD
    INFORMATION PROCESSING LETTERS, 2003, 87 (06) : 287 - 294
  • [17] Optimal Binary Space Partitions in the Plane
    de Berg, Mark
    Khosravi, Amirali
    COMPUTING AND COMBINATORICS, 2010, 6196 : 216 - 225
  • [18] Circumscribing Polygons and Polygonizations for Disjoint Line Segments
    Hugo A. Akitaya
    Matias Korman
    Oliver Korten
    Mikhail Rudoy
    Diane L. Souvaine
    Csaba D. Tóth
    Discrete & Computational Geometry, 2022, 68 : 218 - 254
  • [19] Circumscribing Polygons and Polygonizations for Disjoint Line Segments
    Akitaya, Hugo A.
    Korman, Matias
    Korten, Oliver
    Rudoy, Mikhail
    Souvaine, Diane L.
    Toth, Csaba D.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (01) : 218 - 254
  • [20] Binary space partitions for axis-parallel line segments: Size-height tradeoffs
    Arya, S
    INFORMATION PROCESSING LETTERS, 2002, 84 (04) : 201 - 206