Heteroatoms-Doped Hierarchical Porous Carbon Materials Based on Biomass-Metal Ternary Complex for Supercapacitor

被引:5
|
作者
Wang, He [1 ]
Wu, Shumeng [1 ]
Fan, Bingbing [1 ]
Liu, Xiaoqiang [1 ]
Nie, Yamin [1 ]
Zhou, Yanmei [1 ]
机构
[1] Henan Univ, Coll Chem & Chem Engn, Henan Joint Int Res Lab Environm Pollut Control M, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
PROTIC IONIC LIQUIDS; SMALL MOLECULAR-COMPOUNDS; TEMPERATURE-RESISTANT; FACILE SYNTHESIS; PERFORMANCE; GRAPHENE; ELECTRODE; NITROGEN; COMPOSITES; NANOSHEETS;
D O I
10.1149/1945-7111/ac377d
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Engineering large active surface area, fast ion transfer, and wide work voltage are indispensable for using porous carbon as an electrode material for high energy density and high rate capability supercapacitors. Here, a method is proposed to fabricate N/O/P/S heteroatom co-doped hierarchical porous carbon materials via zinc carbonate hydroxide ([ZnCO3](2)center dot[Zn(OH)(2)](3)) assisted activation of the biomass-based ternary complex. By adjusting the pH of the ternary complex and the mass ratio of [ZnCO3](2)center dot[Zn(OH)(2)](3), it is demonstrated that TCPC-7-0.5 with high specific surface area (1360 m(2) g(-1)), appropriate micropore surface area (672 m(2) g(-1)), and micropore volume (0.3 cm(3) g(-1)) possesses excellent electrochemical performance. The unique pore structure accelerates the transport of electrolyte ions and provides more effective active sites for their adsorption. As a result, as an electrode material for supercapacitors, it maintains excellent frequency response at a larger scan rate of 1 V s(-1). The working voltage range of the assembled symmetrical supercapacitor TCPC-7-0.5//TCPC-7-0.5 in 6 M KOH electrolyte can be effectively expanded to 1.2 V. Most importantly, it can simultaneously achieve an energy density of 7.01 W h kg(-1) at a high-power density of 15 kW kg(-1).
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Synthesis of Biomass-Based Porous Carbon Nanofibre/Polyaniline Composites for Supercapacitor Electrode Materials
    Kong, Debin
    Qin, Caiyun
    Cao, Lin
    Fang, Zeming
    Lai, Fenglin
    Lin, Zhidan
    Zhang, Peng
    Li, Wei
    Lin, Huaijun
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (01): : 265 - 279
  • [42] Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes
    Du, Wei
    Wang, Xiaoning
    Sun, Xueqin
    Zhan, Jie
    Zhang, Huadong
    Zhao, Xiangjin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 827 : 213 - 220
  • [43] Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor
    Yu, Yifeng
    Du, Juan
    Liu, Lei
    Wang, Guoxu
    Zhang, Hongliang
    Chen, Aibing
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (03)
  • [44] Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor
    Yifeng Yu
    Juan Du
    Lei Liu
    Guoxu Wang
    Hongliang Zhang
    Aibing Chen
    Journal of Nanoparticle Research, 2017, 19
  • [45] Nitrogen-doped hierarchical porous carbon for supercapacitor with well electrochemical performances
    Juan Zeng
    Qi Cao
    Xianyou Wang
    Bo Jing
    Xiuxiang Peng
    Xiaoli Tang
    Journal of Solid State Electrochemistry, 2015, 19 : 1591 - 1597
  • [46] Acetone dissolution to prepare N-doped hierarchical porous carbon for supercapacitor
    Ma, Chang
    Liu, Lei
    Zhang, Fang
    Zhang, Yue
    Hou, Senlin
    Chen, Aibing
    DIAMOND AND RELATED MATERIALS, 2020, 108
  • [47] Ultrahigh yield of nitrogen doped porous carbon from biomass waste for supercapacitor
    Wang, Chao
    Wang, Hanwei
    Dang, Baokang
    Wang, Zhe
    Shen, Xiaoping
    Li, Caicai
    Sun, Qingfeng
    RENEWABLE ENERGY, 2020, 156 (156) : 370 - 376
  • [48] Nitrogen-doped hierarchical porous carbon for supercapacitor with well electrochemical performances
    Zeng, Juan
    Cao, Qi
    Wang, Xianyou
    Jing, Bo
    Peng, Xiuxiang
    Tang, Xiaoli
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1591 - 1597
  • [49] Iron Phosphide Incorporated into Iron-Treated Heteroatoms-Doped Porous Bio-Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction
    Thanh-Nhan Tran
    Song, Min Young
    Kang, Tong-Hyun
    Samdani, Jitendra
    Park, Hyean-Yeol
    Kim, Hasuck
    Jhung, Sung Hwa
    Yu, Jong-Sung
    CHEMELECTROCHEM, 2018, 5 (14): : 1944 - 1953
  • [50] Biomass-derived hierarchical porous carbon/silicon carbide composite for electrochemical supercapacitor
    Tang, Qin
    Chen, Xianyong
    Zhou, Dali
    Liu, Can
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 620