Data Mining for Grammatical Inference with Bioinformatics Criteria

被引:0
|
作者
Lopez, Vivian F. [1 ]
Aguilar, Ramiro [1 ]
Alonso, Luis [1 ]
Moreno, Maria N. [1 ]
Corchado, Juan M. [1 ]
机构
[1] Univ Salamanca, Dept Informat & Automat, E-37008 Salamanca, Spain
关键词
Grammatical Inference; Bioinformatic; Free Context Grammar; DNA; sequential patterns;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we describe both theoretical and practical results of a novel data mining process that combines hybrid techniques of association analysis and classical sequentiation algorithms of genomics to generate grammatical structures of a specific language. We used an application of a compilers generator system that allows the development of a practical application within the area of grammarware, where the concepts of the language analysis are applied to other disciplines, such as Bioinformatic. The tool allows the complexity of the obtained grammar to be measured automatically from textual data. A technique of incremental discovery of sequential patterns is presented to obtain simplified production rules, and compacted with bioinformatics criteria to make up a grammar.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 50 条
  • [21] Data Mining and Network Analytics in Bioinformatics
    Zou, Quan
    CURRENT PROTEOMICS, 2018, 15 (03) : 174 - 174
  • [22] Statistical inference and data mining
    Glymour, C
    Madigan, D
    Pregibon, D
    Smyth, P
    COMMUNICATIONS OF THE ACM, 1996, 39 (11) : 35 - 41
  • [23] Data visualization methodologies for data mining systems in bioinformatics
    Staiano, A
    Ciaramella, A
    Raiconi, G
    Tagliaferri, R
    Amato, R
    Longo, G
    Miele, G
    Donalek, C
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 143 - 148
  • [24] Bioinformatics data mining of quantitative proteomic data of disease
    Tu, K.
    Tang, Z.
    Fu, N.
    Zhou, J.
    Zeng, R.
    Xie, L.
    Li, Y.
    MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (10) : S364 - S364
  • [25] Feed-Forward Artificial Neural Network Based Inference System Applied in Bioinformatics Data-Mining
    Leiva, Mauricio U.
    Arredondo, Tomas V.
    Candel, Diego C.
    Dombrovskaia, Lioubov
    Agullo, Loreine C.
    Seeger, Michael P.
    Vasquez, Felix M.
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2536 - +
  • [26] Grammatical Evolution Neural Networks for Data Mining in Toxicogenomics
    Motsinger-Reif, Alison
    MOLECULAR & CELLULAR TOXICOLOGY, 2009, 5 (03) : 40 - 40
  • [27] Data Mining in Bioinformatics, Biomedicine, and Healthcare Informatics
    Gao, Jean X.
    Dubitzky, Werner
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (02) : 483 - 483
  • [28] A redundancy detection approach to mining bioinformatics data
    Camacho, H.
    Salhi, A.
    COMPUTER AIDED METHODS IN OPTIMAL DESIGN AND OPERATIONS, 2006, 7 : 89 - +
  • [29] Data Mining and Network Analytics in Bioinformatics and Medicine
    Zou, Quan
    CURRENT PROTEOMICS, 2018, 15 (05) : 343 - 343
  • [30] Integrative data mining: The new direction in bioinformatics
    Bertone, P
    Gerstein, M
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2001, 20 (04): : 33 - 40