LiMn2O4 nanorod arrays: A potential three-dimensional cathode for lithium-ion microbatteries

被引:19
|
作者
Tang, Xiao [1 ,2 ]
Lin, Binghui [1 ,2 ]
Ge, Yong [1 ]
Ge, Yao [1 ]
Lu, Changjie [1 ]
Savilov, Serguei V. [3 ]
Aldoshin, Serguei M. [4 ]
Xia, Hui [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Jiangsu, Peoples R China
[3] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia
[4] Moscow MV Lomonosov State Univ, Dept Phys Chem Engn, Moscow 119991, Russia
基金
中国国家自然科学基金; 俄罗斯科学基金会; 中国博士后科学基金;
关键词
Nanostructures; Chemical synthesis; Electrochemical measurements; Electrochemical properties; Energy storage; RATE CAPABILITY; BATTERIES; STORAGE;
D O I
10.1016/j.materresbull.2014.11.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although three-dimensional (3D) microbatteries represent great advantage compared to their two-dimensional counterparts, the fabrication of 3D cathode is still a challenge, which holds back the further development of 3D microbatteries. In this work, we present a novel approach for fabrication of LiMn2O4 nanorod arrays as 3D cathode for microbatteries. alpha-MnO2 nanotube arrays are firstly grown on the Pt substrate as the template, and LiMn2O4 nanorod arrays are then prepared by lithiation of alpha-MnO2 nanotube arrays in molten salt followed by 800 degrees C annealing in air. In the half cell test, the 3D LiMn2O4 nanorod arrays exhibit both high gravimetric capacity (similar to 130 mAh g(-1)) and areal capacity (similar to 0.25 mAh cm(-2)), while maintaining good cycling stability and rate capability. The facile synthesis and superior electrochemical performance of the three-dimensional LiMn2O4 cathode make it promising for application in microbatteries. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2 / 6
页数:5
相关论文
共 50 条
  • [1] LiMn2O4 nanoparticles as cathode in aqueous lithium-ion battery
    Kheirmand M.
    Ghasemi A.
    Surface Engineering and Applied Electrochemistry, 2016, 52 (5) : 480 - 486
  • [2] LiMn2O4 cathode material for lithium ion batteries
    Sengupta, S.
    Roy, R. R.
    Mclean, A.
    Dasgupta, S.
    CANADIAN METALLURGICAL QUARTERLY, 2006, 45 (03) : 341 - 346
  • [3] LiMn2O4 for 4 V lithium-ion batteries
    Manev, V
    Banov, B
    Momchilov, A
    Nassalevskaa, A
    JOURNAL OF POWER SOURCES, 1995, 57 (1-2) : 99 - 103
  • [4] LiMn2O4 for 4 V lithium-ion batteries
    Bulgarian Acad of Sciences, Sofia, Bulgaria
    J Power Sources, 1-2 (99-103):
  • [5] Study on kinetics of synthesizing spinel LiMn2O4 for lithium-ion battery cathode
    Zhao, MS
    Zhai, YC
    Tian, YW
    ACTA PHYSICO-CHIMICA SINICA, 2002, 18 (02) : 188 - 192
  • [6] LiFePO4–LiMn2O4 composite cathode materials for lithium-ion batteries
    E. V. Makhonina
    A. E. Medvedeva
    V. S. Dubasova
    V. S. Pervov
    I. L. Eremenko
    Inorganic Materials, 2015, 51 : 1264 - 1269
  • [7] Three-dimensional architectures of spinel-type LiMn2O4 prepared from biomimetic porous carbonates and their application to a cathode for lithium-ion batteries
    Uchiyama, Hiroaki
    Hosono, Eiji
    Zhou, Haoshen
    Imai, Hiroaki
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (23) : 4012 - 4016
  • [8] Electrochemical investigation of LiMn2O4/asphalt and LiMn2O4/bituminous coal based cathode composites for efficient lithium-ion battery
    Tabassam, Rabia
    Alvi, Farah
    Aslam, Naveed
    Raza, Rizwan
    Saifur-Rehman
    Sherin, Lubna
    Ajaml, Muhammad
    Ali, Akbar
    MATERIALS LETTERS, 2021, 302
  • [9] Synthesis of Mn3O4 nanowires and their transformation to LiMn2O4 polyhedrons, application of LiMn2O4 as a cathode in a lithium-ion battery
    Zhang, Xing
    Xing, Zheng
    Yu, Yang
    Li, Qianwen
    Tang, Kaibin
    Huang, Tao
    Zhu, Yongchun
    Qian, Yitai
    Chen, Dong
    CRYSTENGCOMM, 2012, 14 (04): : 1485 - 1489
  • [10] Synthesis of an efficient LiMn2O4 for lithium-ion cells
    Pistoia, G
    Rosati, R
    JOURNAL OF POWER SOURCES, 1996, 58 (02) : 135 - 138