Tissue-specific transcriptome sequencing analysis expands the non-human primate reference transcriptome resource (NHPRTR)

被引:48
|
作者
Peng, Xinxia [1 ,2 ]
Thierry-Mieg, Jean [3 ]
Thierry-Mieg, Danielle [3 ]
Nishida, Andrew [1 ,2 ]
Pipes, Lenore [4 ,5 ]
Bozinoski, Marjan [4 ,5 ]
Thomas, Matthew J. [1 ,2 ]
Kelly, Sara [1 ,2 ]
Weiss, Jeffrey M. [1 ,2 ]
Raveendran, Muthuswamy [6 ]
Muzny, Donna [6 ]
Gibbs, Richard A. [6 ]
Rogers, Jeffrey [6 ]
Schroth, Gary P. [7 ]
Katze, Michael G. [1 ,2 ]
Mason, Christopher E. [4 ,5 ,8 ]
机构
[1] Univ Washington, Dept Microbiol, Seattle, WA 98109 USA
[2] Washington Natl Primate Res Ctr, Seattle, WA 98109 USA
[3] NIH, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA
[4] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10065 USA
[5] Weill Cornell Med Coll, ICB, New York, NY 10065 USA
[6] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA
[7] Illumina Inc, San Diego, CA 92122 USA
[8] Weill Cornell Med Coll, Feil Family Brain & Mind Res Inst BMRI, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
EVOLUTIONARY DYNAMICS; RHESUS MACAQUE; RNA-SEQ; GENE; INSIGHTS;
D O I
10.1093/nar/gku1110
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The non-human primate reference transcriptome resource (NHPRTR, available online at http://nhprtr.org/)aims to generate comprehensive RNA-seq data from a wide variety of non-human primates (NHPs), from lemurs to hominids. In the 2012 Phase I of the NHPRTR project, 19 billion fragments or 3.8 terabases of transcriptome sequences were collected from pools of similar to 20 tissues in 15 species and subspecies. Here we describe a major expansion of NHPRTR by adding 10.1 billion fragments of tissue-specific RNA-seq data. For this effort, we selected 11 of the original 15 NHP species and subspecies and constructed total RNA libraries for the same similar to 15 tissues in each. The sequence quality is such that 88% of the reads align to human reference sequences, allowing us to compute the full list of expression abundance across all tissues for each species, using the reads mapped to human genes. This update also includes improved transcript annotations derived from RNA-seq data for rhesus and cynomolgus macaques, two of the most commonly used NHP models and additional RNA-seq data compiled from related projects. Together, these comprehensive reference transcriptomes from multiple primates serve as a valuable community resource for genome annotation, gene dynamics and comparative functional analysis.
引用
收藏
页码:D737 / D742
页数:6
相关论文
共 50 条
  • [21] Partitioning the Human Transcriptome Using HKera, a Novel Classifier of Housekeeping and Tissue-Specific Genes
    Chiang, Austin W. T.
    Shaw, Grace T. W.
    Hwang, Ming-Jing
    PLOS ONE, 2013, 8 (12):
  • [22] Tissue-specific expression patterns of tau and ubiquitin proteins coordinated with Yersinia pestis pathogenesis in a non-human primate model
    Moyler, Candace
    Chakraborty, Nabarun
    Gautam, Aarti
    Hammamieh, Rasha
    Jett, Marti
    FASEB JOURNAL, 2017, 31
  • [23] Transcriptome analysis reveals tissue-specific responses of Mytilus unguiculatus to Vibrio alginolyticus infection
    Li, Hongfei
    Zhao, Jiemei
    Li, Yaru
    Dong, Zhenyu
    Lin, Shuangrui
    Guo, Baoying
    Qi, Pengzhi
    FISH & SHELLFISH IMMUNOLOGY, 2024, 144
  • [24] TRANSCRIPTOME AND TISSUE-SPECIFIC EXPRESSION ANALYSIS OF OBP AND CSP GENES IN THE DARK BLACK CHAFER
    Ju, Qian
    Li, Xiao
    Jiang, Xiao-Jing
    Qu, Ming-Jing
    Guo, Xiao-Qiang
    Han, Zhao-Jun
    Li, Fei
    ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY, 2014, 87 (04) : 177 - 200
  • [25] Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome
    Perez-Montarelo, Dafne
    Hudson, Nicholas J.
    Fernandez, Ana I.
    Ramayo-Caldas, Yuliaxis
    Dalrymple, Brian P.
    Reverter, Antonio
    PLOS ONE, 2012, 7 (09):
  • [26] INTEGRATIVE ANALYSIS OF HUMAN AND NON-HUMAN PRIMATE BRAIN TISSUE FOR ALCOHOL CONSUMPTION
    Farris, Sean P.
    Iancu, Ovidiu
    Hitzemann, Robert
    Grant, Kathy
    Walter, Nicole A. R.
    Harris, R. Adron
    Mayfield, R. Dayne
    ALCOHOL, 2017, 60 : 213 - 213
  • [27] SoyCSN: Soybean context-specific network analysis and prediction based on tissue-specific transcriptome data
    Wang, Juexin
    Hossain, Md Shakhawat
    Lyu, Zhen
    Schmutz, Jeremy
    Stacey, Gary
    Xu, Dong
    Joshi, Trupti
    PLANT DIRECT, 2019, 3 (09)
  • [28] Human β Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes
    Moran, Ignasi
    Akerman, Ildem
    van de Bunt, Martijn
    Xie, Ruiyu
    Benazra, Marion
    Nammo, Takao
    Arnes, Luis
    Nakic, Nikolina
    Garcia-Hurtado, Javier
    Rodriguez-Segui, Santiago
    Pasquali, Lorenzo
    Sauty-Colace, Claire
    Beucher, Anthony
    Scharfmann, Raphael
    van Arensbergen, Joris
    Johnson, Paul R.
    Berry, Andrew
    Lee, Clarence
    Harkins, Timothy
    Gmyr, Valery
    Pattou, Francois
    Kerr-Conte, Julie
    Piemonti, Lorenzo
    Berney, Thierry
    Hanley, Neil
    Gloyn, Anna L.
    Sussel, Lori
    Langman, Linda
    Brayman, Kenneth L.
    Sander, Maike
    McCarthy, Mark I.
    Ravassard, Philippe
    Ferrer, Jorge
    CELL METABOLISM, 2012, 16 (04) : 435 - 448
  • [29] A transcriptome-based single-cell biological age model and resource for tissue-specific aging measures
    Mao, Shulin
    Su, Jiayu
    Wang, Longteng
    Bo, Xiaochen
    Li, Cheng
    Chen, Hebing
    GENOME RESEARCH, 2023, 33 (08) : 1381 - 1394
  • [30] De novo transcriptome analysis reveals tissue-specific differences in gene expression in Salix arbutifolia
    Rao, Guodong
    Zeng, Yanfei
    Sui, Jinkai
    Zhang, Jianguo
    TREES-STRUCTURE AND FUNCTION, 2016, 30 (05): : 1647 - 1655