Tissue-specific transcriptome sequencing analysis expands the non-human primate reference transcriptome resource (NHPRTR)

被引:48
|
作者
Peng, Xinxia [1 ,2 ]
Thierry-Mieg, Jean [3 ]
Thierry-Mieg, Danielle [3 ]
Nishida, Andrew [1 ,2 ]
Pipes, Lenore [4 ,5 ]
Bozinoski, Marjan [4 ,5 ]
Thomas, Matthew J. [1 ,2 ]
Kelly, Sara [1 ,2 ]
Weiss, Jeffrey M. [1 ,2 ]
Raveendran, Muthuswamy [6 ]
Muzny, Donna [6 ]
Gibbs, Richard A. [6 ]
Rogers, Jeffrey [6 ]
Schroth, Gary P. [7 ]
Katze, Michael G. [1 ,2 ]
Mason, Christopher E. [4 ,5 ,8 ]
机构
[1] Univ Washington, Dept Microbiol, Seattle, WA 98109 USA
[2] Washington Natl Primate Res Ctr, Seattle, WA 98109 USA
[3] NIH, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA
[4] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10065 USA
[5] Weill Cornell Med Coll, ICB, New York, NY 10065 USA
[6] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA
[7] Illumina Inc, San Diego, CA 92122 USA
[8] Weill Cornell Med Coll, Feil Family Brain & Mind Res Inst BMRI, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
EVOLUTIONARY DYNAMICS; RHESUS MACAQUE; RNA-SEQ; GENE; INSIGHTS;
D O I
10.1093/nar/gku1110
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The non-human primate reference transcriptome resource (NHPRTR, available online at http://nhprtr.org/)aims to generate comprehensive RNA-seq data from a wide variety of non-human primates (NHPs), from lemurs to hominids. In the 2012 Phase I of the NHPRTR project, 19 billion fragments or 3.8 terabases of transcriptome sequences were collected from pools of similar to 20 tissues in 15 species and subspecies. Here we describe a major expansion of NHPRTR by adding 10.1 billion fragments of tissue-specific RNA-seq data. For this effort, we selected 11 of the original 15 NHP species and subspecies and constructed total RNA libraries for the same similar to 15 tissues in each. The sequence quality is such that 88% of the reads align to human reference sequences, allowing us to compute the full list of expression abundance across all tissues for each species, using the reads mapped to human genes. This update also includes improved transcript annotations derived from RNA-seq data for rhesus and cynomolgus macaques, two of the most commonly used NHP models and additional RNA-seq data compiled from related projects. Together, these comprehensive reference transcriptomes from multiple primates serve as a valuable community resource for genome annotation, gene dynamics and comparative functional analysis.
引用
收藏
页码:D737 / D742
页数:6
相关论文
共 50 条
  • [1] EXPANDING THE NON-HUMAN PRIMATE REFERENCE TRANSCRIPTOME RESOURCE (NHPRTR): TISSUE-SPECIFIC AND IMMUNE CELL-SPECIFIC TRANSCRIPTOMES
    Peng, Xinxia
    Xiong, Hao
    Pipes, Lenore
    Kelly, Sara
    Thomas, Matthew
    Law, Lynn
    Luo, Shujun
    Langevin, Stanley
    Bosinger, Steven
    Silvestri, Guido
    Raveendran, Muthuswamy
    Muzny, Donna
    Gibbs, Richard
    Rogers, Jeffrey
    Schroth, Gary
    Mason, Christopher
    Katze, Michael
    [J]. JOURNAL OF MEDICAL PRIMATOLOGY, 2015, 44 (05) : 346 - 346
  • [2] The non-human primate reference transcriptome resource (NHPRTR) for comparative functional genomics
    Pipes, Lenore
    Li, Sheng
    Bozinoski, Marjan
    Palermo, Robert
    Peng, Xinxia
    Blood, Phillip
    Kelly, Sara
    Weiss, Jeffrey M.
    Thierry-Mieg, Jean
    Thierry-Mieg, Danielle
    Zumbo, Paul
    Chen, Ronghua
    Schroth, Gary P.
    Mason, Christopher E.
    Katze, Michael G.
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D906 - D914
  • [3] Diurnal and circadian rhythmicity of the human blood transcriptome overlaps with organ- and tissue-specific expression of a non-human primate
    Carla S. Möller-Levet
    Emma E. Laing
    Simon N. Archer
    Derk-Jan Dijk
    [J]. BMC Biology, 20
  • [4] SEQUENCING THE TRANSCRIPTOME IN A NON-HUMAN PRIMATE (NHP) MODEL OF CHRONIC ETHANOL CONSUMPTION
    Hitzemann, R.
    Iancu, O.
    Colville, A.
    Darakjian, P.
    Helms, C.
    Grant, K.
    [J]. ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2015, 39 : 285A - 285A
  • [5] Insights from tissue-specific transcriptome sequencing analysis of Triatoma infestans
    Goncalves, Leilane O.
    de Oliveira, Luciana M.
    D'Avila Pessoa, Grasielle C.
    Rosa, Aline C. L.
    Bustamante, Marinely G.
    Belisario, Carlota J.
    Resende, Daniela M.
    Diotaiuti, Lileia G.
    Ruiz, Jeronimo C.
    [J]. MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2017, 112 (06): : 456 - 457
  • [6] The non-human primate kidney transcriptome in fetal development
    Spradling-Reeves, Kimberly D.
    Glenn, Jeremy P.
    Lange, Kenneth J.
    Kuhn, Natalia
    Coalson, Jacqueline J.
    Nijland, Mark J.
    Li, Cun
    Nathanielsz, Peter W.
    Cox, Laura A.
    [J]. JOURNAL OF MEDICAL PRIMATOLOGY, 2018, 47 (03) : 157 - 171
  • [7] Diurnal and circadian rhythmicity of the human blood transcriptome overlaps with organ- and tissue-specific expression of a non-human primate (vol 20, 63, 2022)
    Moller-Levet, Carla S.
    Laing, Emma E.
    Archer, Simon N.
    Dijk, Derk-Jan
    [J]. BMC BIOLOGY, 2022, 20 (01)
  • [8] Biclustering of transcriptome sequencing data reveals human tissue-specific circular RNAs
    Yu-Chen Liu
    Yu-Jung Chiu
    Jian-Rong Li
    Chuan-Hu Sun
    Chun-Chi Liu
    Hsien-Da Huang
    [J]. BMC Genomics, 19
  • [9] Biclustering of transcriptome sequencing data reveals human tissue-specific circular RNAs
    Liu, Yu-Chen
    Chiu, Yu-Jung
    Li, Jian-Rong
    Sun, Chuan-Hu
    Liu, Chun-Chi
    Huang, Hsien-Da
    [J]. BMC GENOMICS, 2018, 19
  • [10] Revealing the characteristics of ZIKV infection through tissue-specific transcriptome sequencing analysis
    Chen, Zhi-lu
    Yin, Zuo-jing
    Qiu, Tian-yi
    Chen, Jian
    Liu, Jian
    Zhang, Xiao-yan
    Xu, Jian-qing
    [J]. BMC GENOMICS, 2022, 23 (01)