Machine Learning of Noise-Resilient Quantum Circuits

被引:58
|
作者
Cincio, Lukasz [1 ]
Rudinger, Kenneth [2 ]
Sarovar, Mohan [3 ]
Coles, Patrick J. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, MS 213, Los Alamos, NM 87545 USA
[2] Sandia Natl Labs, Quantum Comp Sci, POB 5800, Albuquerque, NM 87185 USA
[3] Sandia Natl Labs, Extreme Scale Data Sci & Analyt, Livermore, CA 94550 USA
来源
PRX QUANTUM | 2021年 / 2卷 / 01期
关键词
Quantum optics - Cost functions - Qubits - Sodium chloride - Timing circuits;
D O I
10.1103/PRXQuantum.2.010324
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Noise mitigation and reduction will be crucial for obtaining useful answers from near-term quantum computers. In this work, we present a general framework based on machine learning for reducing the impact of quantum hardware noise on quantum circuits. Our method, called noise-aware circuit learning (NACL), applies to circuits designed to compute a unitary transformation, prepare a set of quantum states, or estimate an observable of a many-qubit state. Given a task and a device model that captures information about the noise and connectivity of qubits in a device, NACL outputs an optimized circuit to accomplish this task in the presence of noise. It does so by minimizing a task-specific cost function over circuit depths and circuit structures. To demonstrate NACL, we construct circuits resilient to a fine-grained noise model derived from gate set tomography on a superconducting-circuit quantum device, for applications including quantum state overlap, quantum Fourier transform, and W-state preparation.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Noise-resilient group testing: Limitations and constructions
    Cheraghchi, Mahdi
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (1-2) : 81 - 95
  • [22] Noise-Resilient Photonic Analog Neural Networks
    Varri, Akhil
    Bruckerhoff-Pluckelmann, Frank
    Dijkstra, Jelle
    Wendland, Daniel
    Bankwitz, Rasmus
    Agnihotri, Apoorv
    Pernice, Wolfram H. P.
    [J]. Journal of Lightwave Technology, 2024, 42 (22) : 7969 - 7976
  • [23] Noise-resilient scaling for wideband distributed beamforming
    Gencel, Muhammed Faruk
    Rasekh, Maryam Eslami
    Madhow, Upamanyu
    [J]. 2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 276 - 280
  • [24] A Noise-Resilient Collaborative Learning Approach to Content-Based Image Retrieval
    Qi, Xiaojun
    Barrett, Samuel
    Chang, Ran
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2011, 26 (12) : 1153 - 1175
  • [25] Noise-Resilient Group Testing: Limitations and Constructions
    Cheraghchi, Mahdi
    [J]. FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 2009, 5699 : 62 - 73
  • [26] Noise-Resilient Federated Learning: Suppressing Noisy Labels in the Local Datasets of Participants
    Mishra, Rahul
    Gupta, Hari Prabhat
    Dutta, Tanima
    [J]. IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [27] Adaptive noise-resilient deep learning for image reconstruction in multimode fiber scattering
    Mohammadzadeh, Mohammad
    Tabakhi, Shima
    Sayeh, Mohammad R.
    [J]. APPLIED OPTICS, 2024, 63 (12) : 3003 - 3014
  • [28] Silicon integrated photonic-electronic neuron for noise-resilient deep learning
    Roumpos, Ioannis
    De Marinis, Lorenzo
    Kovaios, Stefanos
    Kincaid, Peter Seigo
    Paolini, Emilio
    Tsakyridis, Apostolos
    Moralis-Pegios, Miltiadis
    Berciano, Mathias
    Ferraro, Filippo
    Bode, Dieter
    Srinivasan, Srinivasan Ashwyn
    Pantouvaki, Marianna
    Andriolli, Nicola
    Contestabile, Giampiero
    Pleros, Nikos
    Vyrsokinos, Konstantinos
    [J]. Optics Express, 2024, 32 (20) : 34264 - 34274
  • [29] Noise-resilient and high-speed deep learning with coherent silicon photonics
    G. Mourgias-Alexandris
    M. Moralis-Pegios
    A. Tsakyridis
    S. Simos
    G. Dabos
    A. Totovic
    N. Passalis
    M. Kirtas
    T. Rutirawut
    F. Y. Gardes
    A. Tefas
    N. Pleros
    [J]. Nature Communications, 13
  • [30] Noise-resilient and high-speed deep learning with coherent silicon photonics
    Mourgias-Alexandris, G.
    Moralis-Pegios, M.
    Tsakyridis, A.
    Simos, S.
    Dabos, G.
    Totovic, A.
    Passalis, N.
    Kirtas, M.
    Rutirawut, T.
    Gardes, F. Y.
    Tefas, A.
    Pleros, N.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)