Machine Learning of Noise-Resilient Quantum Circuits

被引:58
|
作者
Cincio, Lukasz [1 ]
Rudinger, Kenneth [2 ]
Sarovar, Mohan [3 ]
Coles, Patrick J. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, MS 213, Los Alamos, NM 87545 USA
[2] Sandia Natl Labs, Quantum Comp Sci, POB 5800, Albuquerque, NM 87185 USA
[3] Sandia Natl Labs, Extreme Scale Data Sci & Analyt, Livermore, CA 94550 USA
来源
PRX QUANTUM | 2021年 / 2卷 / 01期
关键词
Quantum optics - Cost functions - Qubits - Sodium chloride - Timing circuits;
D O I
10.1103/PRXQuantum.2.010324
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Noise mitigation and reduction will be crucial for obtaining useful answers from near-term quantum computers. In this work, we present a general framework based on machine learning for reducing the impact of quantum hardware noise on quantum circuits. Our method, called noise-aware circuit learning (NACL), applies to circuits designed to compute a unitary transformation, prepare a set of quantum states, or estimate an observable of a many-qubit state. Given a task and a device model that captures information about the noise and connectivity of qubits in a device, NACL outputs an optimized circuit to accomplish this task in the presence of noise. It does so by minimizing a task-specific cost function over circuit depths and circuit structures. To demonstrate NACL, we construct circuits resilient to a fine-grained noise model derived from gate set tomography on a superconducting-circuit quantum device, for applications including quantum state overlap, quantum Fourier transform, and W-state preparation.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Noise-Resilient Quantum Machine Learning for Stability Assessment of Power Systems
    Zhou, Yifan
    Zhang, Peng
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (01) : 475 - 487
  • [2] Noise-resilient quantum power flow
    Feng, Fei
    Zhou, Yi-Fan
    Zhang, Peng
    [J]. iEnergy, 2023, 2 (01): : 63 - 70
  • [3] Dynamic adaptive quantum approximate optimization algorithm for shallow, noise-resilient circuits
    Yanakiev, Nikola
    Mertig, Normann
    Long, Christopher K.
    Arvidsson-Shukur, David R. M.
    [J]. PHYSICAL REVIEW A, 2024, 109 (03)
  • [4] Noise-resilient quantum interface based on quantum nondemolition interactions
    Marek, Petr
    Filip, Radim
    [J]. PHYSICAL REVIEW A, 2010, 81 (04):
  • [5] Noise-resilient quantum evolution steered by dynamical decoupling
    Gang-Qin Liu
    Hoi Chun Po
    Jiangfeng Du
    Ren-Bao Liu
    Xin-Yu Pan
    [J]. Nature Communications, 4
  • [6] Noise-resilient quantum evolution steered by dynamical decoupling
    Liu, Gang-Qin
    Po, Hoi Chun
    Du, Jiangfeng
    Liu, Ren-Bao
    Pan, Xin-Yu
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [7] Noise-resilient deep learning for integrated circuit tomography
    Guo, Zhen
    Liu, Zhiguang
    Barbastathis, George
    Zhang, Qihang
    Glinsky, Michael E.
    Alpert, Bradley K.
    Levine, Zachary H.
    [J]. OPTICS EXPRESS, 2023, 31 (10) : 15355 - 15371
  • [8] A Noise-Resilient Online Learning Algorithm for Scene Classification
    Jian, Ling
    Gao, Fuhao
    Ren, Peng
    Song, Yunquan
    Luo, Shihua
    [J]. REMOTE SENSING, 2018, 10 (11)
  • [9] Noise-Resilient Ensemble Learning Using Evidence Accumulation
    Candel, Gaelle
    Naccache, David
    [J]. ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2021, 2022, 1534 : 374 - 388
  • [10] Noise-resilient variational hybrid quantum-classical optimization
    Gentini, Laura
    Cuccoli, Alessandro
    Pirandola, Stefano
    Verrucchi, Paola
    Banchi, Leonardo
    [J]. PHYSICAL REVIEW A, 2020, 102 (05)