Water cycle algorithm for solving constrained multi-objective optimization problems

被引:206
|
作者
Sadollah, Ali [1 ]
Eskandar, Hadi [2 ]
Kim, Joong Hoon [1 ]
机构
[1] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul 136713, South Korea
[2] Univ Semnan, Fac Mech Engn, Semnan, Iran
基金
新加坡国家研究基金会;
关键词
Multi-objective optimization; Water cycle algorithm; Pareto optimal solutions; Benchmark function; Metaheuristics; Constrained optimization; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM;
D O I
10.1016/j.asoc.2014.10.042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a metaheuristic optimizer, the multi-objective water cycle algorithm (MOWCA), is presented for solving constrained multi-objective problems. The MOWCA is based on emulation of the water cycle process in nature. In this study, a set of non-dominated solutions obtained by the proposed algorithm is kept in an archive to be used to display the exploratory capability of the MOWCA as compared to other efficient methods in the literature. Moreover, to make a comprehensive assessment about the robustness and efficiency of the proposed algorithm, the obtained optimization results are also compared with other widely used optimizers for constrained and engineering design problems. The comparisons are carried out using tabular, descriptive, and graphical presentations. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:279 / 298
页数:20
相关论文
共 50 条
  • [21] MOGOA algorithm for constrained and unconstrained multi-objective optimization problems
    Alaa Tharwat
    Essam H. Houssein
    Mohammed M. Ahmed
    Aboul Ella Hassanien
    Thomas Gabel
    Applied Intelligence, 2018, 48 : 2268 - 2283
  • [22] A novel multi-objective PSO algorithm for constrained optimization problems
    Wei, Jingxuan
    Wang, Yuping
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2006, 4247 : 174 - 180
  • [23] A novel two-phase evolutionary algorithm for solving constrained multi-objective optimization problems
    Wang, Yanping
    Liu, Yuan
    Zou, Juan
    Zheng, Jinhua
    Yang, Shengxiang
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [24] Artificial Glowworm Swarm Optimization Algorithm for Solving Multi-objective Constrained Optimization
    Luo, Qifang
    Gong, Qiaoqiao
    Zhou, Yongquan
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 2393 - 2397
  • [25] Push and pull search for solving constrained multi-objective optimization problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Li, Hui
    Wei, Caimin
    Zhang, Qingfu
    Deb, Kalyanmoy
    Goodman, Erik
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 665 - 679
  • [27] A multi-objective evolutionary algorithm for steady-state constrained multi-objective optimization problems
    Yang, Yongkuan
    Liu, Jianchang
    Tan, Shubin
    APPLIED SOFT COMPUTING, 2021, 101
  • [28] Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
    Mirjalili, Seyedali
    Jangir, Pradeep
    Saremi, Shahrzad
    APPLIED INTELLIGENCE, 2017, 46 (01) : 79 - 95
  • [29] MOIMPA: multi-objective improved marine predators algorithm for solving multi-objective optimization problems
    Hassan, Mohamed H.
    Daqaq, Fatima
    Selim, Ali
    Dominguez-Garcia, Jose Luis
    Kamel, Salah
    SOFT COMPUTING, 2023, 27 (21) : 15719 - 15740
  • [30] Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
    Seyedali Mirjalili
    Pradeep Jangir
    Shahrzad Saremi
    Applied Intelligence, 2017, 46 : 79 - 95