Analysis of time-series gene expression data: Methods, challenges, and opportunities

被引:84
|
作者
Androulakis, I. P. [1 ]
Yang, E.
Almon, R. R.
机构
[1] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
[2] SUNY Buffalo, Dept Biol Sci, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Dept Pharmaceut Sci, Buffalo, NY 14260 USA
关键词
microarrays; bioinformatics; regulation; clustering; pharmacogenomics;
D O I
10.1146/annurev.bioeng.9.060906.151904
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Monitoring the change in expression patterns over time provides the distinct possibility of unraveling the mechanistic drivers characterizing cellular responses. Gene arrays measuring the level of mRNA expression of thousands of genes simultaneously provide a method of high-throughput data collection necessary for obtaining the scope of data required for understanding the complexities of living organisms. Unraveling the coherent complex structures of transcriptional dynamics is the goal of a large family of computational methods aiming at upgrading the information content of time-course gene expression data. In this review, we summarize the qualitative characteristics of these approaches, discuss the main challenges that this type of complex data present, and, finally, explore the opportunities in the context of developing mechanistic models of cellular response.
引用
收藏
页码:205 / 228
页数:24
相关论文
共 50 条
  • [1] Gene Selection in Time-Series Gene Expression Data
    Adhikari, Prem Raj
    Upadhyaya, Bimal Babu
    Meng, Chen
    Hollmen, Jaakko
    [J]. PATTERN RECOGNITION IN BIOINFORMATICS, 2011, 7036 : 145 - +
  • [2] A dynamic time order network for time-series gene expression data analysis
    Zhang, Pengyue
    Mourad, Raphael
    Xiang, Yang
    Huang, Kun
    Huang, Tim
    Nephew, Kenneth
    Liu, Yunlong
    Li, Lang
    [J]. BMC SYSTEMS BIOLOGY, 2012, 6
  • [3] On Time-series Topological Data Analysis: New Data and Opportunities
    Seversky, Lee M.
    Davis, Shelby
    Berger, Matthew
    [J]. PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 1014 - 1022
  • [4] A New Biclustering Algorithm for Time-Series Gene Expression Data Analysis
    Xue, Yun
    Liao, Zhengling
    Li, Meihang
    Luo, Jie
    Hu, Xiaohui
    Luo, Guiyin
    Chen, Wen-Sheng
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 268 - 272
  • [5] Short time-series microarray analysis: Methods and challenges
    Wang, Xuewei
    Wu, Ming
    Li, Zheng
    Chan, Christina
    [J]. BMC SYSTEMS BIOLOGY, 2008, 2
  • [6] ANALYSIS OF SCANNED DATA BY METHODS OF TIME-SERIES ANALYSIS
    MEINICKE, C
    SORKAU, E
    KNOBLAUCH, S
    ZWANZIGER, HW
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 1992, 11 (01) : 8 - 10
  • [7] Continuous representations of time-series gene expression data
    Bar-Joseph, Z
    Gerber, GK
    Gifford, DK
    Jaakkola, TS
    Simon, I
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (3-4) : 341 - 356
  • [8] Embedding mRNA Stability in Correlation Analysis of Time-Series Gene Expression Data
    Farina, Lorenzo
    De Santis, Alberto
    Salvucci, Samanta
    Morelli, Giorgio
    Ruberti, Ida
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (08)
  • [9] DIMENSIONALITY ANALYSIS OF TIME-SERIES DATA - NONLINEAR METHODS
    FOWLER, AD
    ROACH, DE
    [J]. COMPUTERS & GEOSCIENCES, 1993, 19 (01) : 41 - 52
  • [10] Clustering Time-Series Gene Expression Data with Unequal Time Intervals
    Rueda, Luis
    Bari, Ataul
    Ngom, Alioune
    [J]. TRANSACTIONS ON COMPUTATIONAL SYSTEMS BIOLOGY X, 2008, 5410 : 100 - 123