Gene Selection in Time-Series Gene Expression Data

被引:0
|
作者
Adhikari, Prem Raj [1 ]
Upadhyaya, Bimal Babu [1 ]
Meng, Chen [2 ]
Hollmen, Jaakko [1 ]
机构
[1] Aalto Univ, Sch Sci, Dept Informat & Comp Sci, POB 15400, FI-00076 Espoo, Finland
[2] Sch Comp Sci & Commun, Royal Inst Technol, Dept Computat Biol, Stockholm, Sweden
来源
关键词
Feature Selection; Statistical Significance; Time-series; Randomization; CLASSIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dimensionality of biological data is often very high. Feature selection can be used to tackle the problem of high dimensionality. However, majority of the work in feature selection consists of supervised feature selection methods which require class labels. The problem further escalates when the data is time-series gene expression measurements that measure the effect of external stimuli on biological system. In this paper we propose an unsupervised method for gene selection from time-series gene expression data founded on statistical significance testing and swap randomization. We perform experiments with a publicly available mouse gene expression dataset and also a human gene expression dataset describing the exposure to asbestos. The results in both datasets show a considerable decrease in number of genes.
引用
收藏
页码:145 / +
页数:3
相关论文
共 50 条
  • [1] Continuous representations of time-series gene expression data
    Bar-Joseph, Z
    Gerber, GK
    Gifford, DK
    Jaakkola, TS
    Simon, I
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (3-4) : 341 - 356
  • [2] Clustering Time-Series Gene Expression Data with Unequal Time Intervals
    Rueda, Luis
    Bari, Ataul
    Ngom, Alioune
    [J]. TRANSACTIONS ON COMPUTATIONAL SYSTEMS BIOLOGY X, 2008, 5410 : 100 - 123
  • [3] Interactive Network Visualization of Gene Expression Time-Series Data
    Cruz, Antonio
    Arrais, Joel P.
    Machado, Penousal
    [J]. 2018 22ND INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2018, : 574 - 580
  • [4] Clustering of unevenly sampled gene expression time-series data
    Möller-Levet, CS
    Klawonn, F
    Cho, KH
    Yin, H
    Wolkenhauer, O
    [J]. FUZZY SETS AND SYSTEMS, 2005, 152 (01) : 49 - 66
  • [5] A dynamic time order network for time-series gene expression data analysis
    Zhang, Pengyue
    Mourad, Raphael
    Xiang, Yang
    Huang, Kun
    Huang, Tim
    Nephew, Kenneth
    Liu, Yunlong
    Li, Lang
    [J]. BMC SYSTEMS BIOLOGY, 2012, 6
  • [6] Stochastic dynamic modeling of short gene expression time-series data
    Wang, Zidong
    Yang, Fuwen
    Ho, Daniel W. C.
    Swift, Stephen
    Tucker, Allan
    Liu, Xiaohui
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2008, 7 (01) : 44 - 55
  • [7] Extrapolating heterogeneous time-series gene expression data using Sagittarius
    Woicik, Addie
    Zhang, Mingxin
    Chan, Janelle
    Ma, Jianzhu
    Wang, Sheng
    [J]. NATURE MACHINE INTELLIGENCE, 2023, 5 (07) : 699 - +
  • [8] A New Biclustering Algorithm for Time-Series Gene Expression Data Analysis
    Xue, Yun
    Liao, Zhengling
    Li, Meihang
    Luo, Jie
    Hu, Xiaohui
    Luo, Guiyin
    Chen, Wen-Sheng
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 268 - 272
  • [9] Extrapolating heterogeneous time-series gene expression data using Sagittarius
    Addie Woicik
    Mingxin Zhang
    Janelle Chan
    Jianzhu Ma
    Sheng Wang
    [J]. Nature Machine Intelligence, 2023, 5 : 699 - 713
  • [10] Analysis of time-series gene expression data: Methods, challenges, and opportunities
    Androulakis, I. P.
    Yang, E.
    Almon, R. R.
    [J]. ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2007, 9 : 205 - 228