Variational Message Passing and Local Constraint Manipulation in Factor Graphs

被引:13
|
作者
Senoz, Ismail [1 ]
van de Laar, Thijs [1 ]
Bagaev, Dmitry [1 ]
de Vries, Bert [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands
[2] GN Hearing, JF Kennedylaan 2, NL-5612 AB Eindhoven, Netherlands
关键词
Bayesian inference; Bethe free energy; factor graphs; message passing; variational free energy; variational inference; variational message passing; BELIEF PROPAGATION; RELATIVE ENTROPY; PRINCIPLE;
D O I
10.3390/e23070807
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Accurate evaluation of Bayesian model evidence for a given data set is a fundamental problem in model development. Since evidence evaluations are usually intractable, in practice variational free energy (VFE) minimization provides an attractive alternative, as the VFE is an upper bound on negative model log-evidence (NLE). In order to improve tractability of the VFE, it is common to manipulate the constraints in the search space for the posterior distribution of the latent variables. Unfortunately, constraint manipulation may also lead to a less accurate estimate of the NLE. Thus, constraint manipulation implies an engineering trade-off between tractability and accuracy of model evidence estimation. In this paper, we develop a unifying account of constraint manipulation for variational inference in models that can be represented by a (Forney-style) factor graph, for which we identify the Bethe Free Energy as an approximation to the VFE. We derive well-known message passing algorithms from first principles, as the result of minimizing the constrained Bethe Free Energy (BFE). The proposed method supports evaluation of the BFE in factor graphs for model scoring and development of new message passing-based inference algorithms that potentially improve evidence estimation accuracy.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] On variational message passing on factor graphs
    Dauwels, Justin
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 2546 - 2550
  • [2] Variational message passing
    Winn, J
    Bishop, CM
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 661 - 694
  • [3] ON APPROXIMATE NONLINEAR GAUSSIAN MESSAGE PASSING ON FACTOR GRAPHS
    Petersen, Eike
    Hoffmann, Christian
    Rostalski, Philipp
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 513 - 517
  • [4] Linear Optimal Control on Factor Graphs - A Message Passing Perspective
    Hoffmann, Christian
    Rostalski, Philipp
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 6314 - 6319
  • [5] Iterative Similarity Inference via Message Passing in Factor Graphs for Collaborative Filtering
    Zou, Jun
    Einolghozati, Arash
    Ayday, Erman
    Fekri, Faramarz
    [J]. 2013 IEEE INFORMATION THEORY WORKSHOP (ITW), 2013,
  • [6] Perturbed message passing for Constraint Satisfaction Problems
    Department of Computing Science, University of Alberta, Edmonton
    AB
    T6E 2E8, Canada
    [J]. J. Mach. Learn. Res., (1249-1274):
  • [7] Perturbed Message Passing for Constraint Satisfaction Problems
    Ravanbakhsh, Siamak
    Greiner, Russell
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 1249 - 1274
  • [8] COMPUTATION OF CROSS-MOMENTS USING MESSAGE PASSING OVER FACTOR GRAPHS
    Ilic, Velimir M.
    Stankovic, Miomir S.
    Todorovic, Branimir T.
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (03) : 363 - 384
  • [9] Iterative Approximate Nonlinear Inference via Gaussian Message Passing on Factor Graphs
    Hoffmann, Christian Herzog Ne
    Petersen, Eike
    Rostalski, Philipp
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (04): : 978 - 983
  • [10] Message Passing for Soft Constraint Dual Decomposition
    Belanger, David
    Passos, Alexandre
    Riedel, Sebastian
    McCallum, Andrew
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 62 - 71