Linear Optimal Control on Factor Graphs - A Message Passing Perspective

被引:16
|
作者
Hoffmann, Christian [1 ]
Rostalski, Philipp [1 ]
机构
[1] Inst Elect Engn Med, D-23568 Lubeck, Germany
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Message passing; Probabilistic models; LQG control; Factor graphs; Expectation; maximization; Kalman filtering; Iterative learning control; Normal unknown variance prior;
D O I
10.1016/j.ifacol.2017.08.914
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Factor graphs form a class of probabilistic graphical models representing the factorization of probability density functions as bipartite graphs. They can be used to exploit the conditional independence structure of the underlying model to efficiently solve inference problems by message passing. The present paper advocates the use of factor graphs in control and highlights similarities to, e.g., signal processing and communications where this class of models is widely used. By applying the factor graph framework to a probabilistic interpretation of optimal control, several classical results are recovered. The dynamic programming approach to linear quadratic Gaussian control is described as a message passing algorithm on factor graph on which possible extensions are exemplified. A factor graph-based iterative learning control scheme is outlined and an expectation maximization-based estimation of normal unknown variance priors is adapted for the derivation of sparse control signals, highlighting the benefits of using a unified framework across disciplines by mixing and matching corresponding graphical algorithms. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6314 / 6319
页数:6
相关论文
共 50 条
  • [1] On variational message passing on factor graphs
    Dauwels, Justin
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 2546 - 2550
  • [2] Equalization on graphs: Linear programming and message passing
    Taghavi, Mohammad H.
    Siegel, Paul H.
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 2551 - 2555
  • [3] Particle Smoothing for Conditionally Linear Gaussian Models as Message Passing Over Factor Graphs
    Vitetta, Giorgio Matteo
    Sirignano, Emilio
    Montorsi, Francesco
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (14) : 3633 - 3648
  • [4] ON APPROXIMATE NONLINEAR GAUSSIAN MESSAGE PASSING ON FACTOR GRAPHS
    Petersen, Eike
    Hoffmann, Christian
    Rostalski, Philipp
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 513 - 517
  • [5] Equality Constrained Linear Optimal Control With Factor Graphs
    Yang, Shuo
    Chen, Gerry
    Zhang, Yetong
    Choset, Howie
    Dellaert, Frank
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 9717 - 9723
  • [6] OPTIMAL AVERAGE MESSAGE-PASSING DENSITY IN MOORE GRAPHS
    NANAVATI, AA
    IYENGAR, SS
    [J]. APPLIED MATHEMATICS LETTERS, 1994, 7 (05) : 67 - 70
  • [7] Variational Message Passing and Local Constraint Manipulation in Factor Graphs
    Senoz, Ismail
    van de Laar, Thijs
    Bagaev, Dmitry
    de Vries, Bert
    [J]. ENTROPY, 2021, 23 (07)
  • [8] Iterative Similarity Inference via Message Passing in Factor Graphs for Collaborative Filtering
    Zou, Jun
    Einolghozati, Arash
    Ayday, Erman
    Fekri, Faramarz
    [J]. 2013 IEEE INFORMATION THEORY WORKSHOP (ITW), 2013,
  • [9] COMPUTATION OF CROSS-MOMENTS USING MESSAGE PASSING OVER FACTOR GRAPHS
    Ilic, Velimir M.
    Stankovic, Miomir S.
    Todorovic, Branimir T.
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (03) : 363 - 384
  • [10] Iterative Approximate Nonlinear Inference via Gaussian Message Passing on Factor Graphs
    Hoffmann, Christian Herzog Ne
    Petersen, Eike
    Rostalski, Philipp
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (04): : 978 - 983