Combined analysis of Cryosat-2/SMOS sea ice thickness data with model reanalysis fields over the Baltic Sea

被引:0
|
作者
Raudsepp, Urmas [1 ]
Uiboupin, Rivo [2 ]
Maljutenko, Ilja [1 ]
Hendricks, Stefan [3 ]
Ricker, Robert [3 ]
Liu, Ye [4 ]
Iovino, Doroteaciro [5 ]
Peterson, K. Andrew [6 ]
Zuo, Hao [7 ]
Lavergne, Thomas [8 ]
Aaboe, Signe [8 ]
Raj, Roshin P. [9 ]
机构
[1] Tallinn Univ Technol, Marine Syst Inst, Tallinn, Estonia
[2] TalTech, Tallinn, Estonia
[3] Alfred Wegener Inst, Bremerhaven, Germany
[4] Swedish Meteorol & Hydrol Inst, Norrkoping, Sweden
[5] CMCC, Bologna, Italy
[6] ECCC, Quebec City, PQ, Canada
[7] ECMWF, Reading, Berks, England
[8] MET, Tromso, Norway
[9] Nansen Environm & Remote Sensing Ctr, Bergen, Norway
关键词
D O I
暂无
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
引用
收藏
页码:S73 / +
页数:9
相关论文
共 50 条
  • [41] Arctic sea ice thickness retrievals from CryoSat-2: seasonal and interannual comparisons of three different products
    Li, Mengmeng
    Ke, Chang-Qing
    Xie, Hongjie
    Miao, Xin
    Shen, Xiaoyi
    Xia, Wentao
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (01) : 152 - 170
  • [42] Arctic Snow Depth and Sea Ice Thickness From ICESat-2 and CryoSat-2 Freeboards: A First Examination
    Kwok, R.
    Kacimi, S.
    Webster, M. A.
    Kurtz, N. T.
    Petty, A. A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (03)
  • [43] Combined SMAP-SMOS thin sea ice thickness retrieval
    Patilea, Catalin
    Heygster, Georg
    Huntemann, Marcus
    Spreen, Gunnar
    [J]. CRYOSPHERE, 2019, 13 (02): : 675 - 691
  • [44] Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection
    Lee, Sanggyun
    Im, Jungho
    Kim, Jinwoo
    Kim, Miae
    Shin, Minso
    Kim, Hyun-cheol
    Quackenbush, Lindi J.
    [J]. REMOTE SENSING, 2016, 8 (09)
  • [45] A comparison of Arctic sea ice freeboard products from Sentinel-3A and CryoSat-2 data
    Shen, Xiaoyi
    Ke, Chang-Qing
    Xie, Hongjie
    Li, Mengmeng
    Xia, Wentao
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (07) : 2789 - 2806
  • [46] Sea Ice Classification Using Cryosat-2 Altimeter Data by Optimal Classifier-Feature Assembly
    Shen, Xiaoyi
    Zhang, Jie
    Zhang, Xi
    Meng, Junmin
    Ke, Changqing
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) : 1948 - 1952
  • [47] Sea Ice Roughness Overlooked as a Key Source of Uncertainty in CryoSat-2 Ice Freeboard Retrievals
    Landy, Jack C.
    Petty, Alek A.
    Tsamados, Michel
    Stroeve, Julienne C.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (05)
  • [48] Baltic Sea ice thickness charts based on thermodynamic ice model and SAR data
    Karvonen, Juha
    Cheng, Bin
    Simila, Markku
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 4253 - 4256
  • [49] Sea ice type classification based on random forest machine learning with Cryosat-2 altimeter data
    Shen, Xiao-yi
    Zhang, Jie
    Meng, Jun-min
    Zhang, Jie
    Ke, Chang-qing
    [J]. 2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [50] Comparing elevation and backscatter retrievals from CryoSat-2 and ICESat-2 over Arctic summer sea ice
    Dawson, Geoffrey J.
    Landy, Jack C.
    [J]. CRYOSPHERE, 2023, 17 (09): : 4165 - 4178