Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites

被引:60
|
作者
Burger, N. [1 ,2 ]
Laachachi, A. [1 ]
Mortazavi, B. [3 ]
Ferriol, M. [2 ]
Lutz, M. [4 ]
Toniazzo, V. [1 ]
Ruch, D. [1 ]
机构
[1] LIST, Dept Mat Res & Technol MRT, ZAE Robert Steichen, L-4940 Hautcharage, Luxembourg
[2] Univ Lorraine, LMOPS, EA 4423, F-57070 Metz, France
[3] Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
[4] Thales Alenia Space, Mech & Thermal Technol Dept, F-06156 Cannes La Bocca, France
关键词
Thermal conductivity; Composites; Alignment; Network; Epoxy; CARBON NANOTUBE ARRAY; POLYMER NANOCOMPOSITES; GRAPHENE;
D O I
10.1016/j.ijheatmasstransfer.2015.05.065
中图分类号
O414.1 [热力学];
学科分类号
摘要
Instead of improving the fillers dispersion in the matrix, some fillers alignments and structured composites were investigated in order to highlight their impact on thermal conductivity. Whereas well dispersed graphite-nanocomposites show some limit to reach high thermal conductivity values (0.84 W m(-1) K-1 at 12 wt.%), 3D-structured composite or Z-pinning samples display much better enhancements of apparent thermal conductivity, reaching 2.1 W m(-1) K-1 at 15 wt.%. Impact of insulating DGEBA interfaces was also investigated in this work. It was demonstrated that only two 4 mu m-DGEBA layers cutting the fibers alignment is enough to bring thermal conductivity back to the value of the non-structured nanocomposite, losing all the positive impact of alignment. Mathematical evaluations helped estimating the through-plane thermal conductivities of the samples, highlighting the negative impact of interfaces, and displaying the major difference between a 3D-network sample and a Z-pinned aligned sample. Whereas the 3D-network sample displays a relatively good improvement of both in-plane and through-plane thermal conductivities, the Z-pinned sample presents a considerable increase of the through-plane thermal conductivity (until 6.8 W m(-1) K-1), but also a negligible effect on the in-plane thermal conductivity. Resulting apparent thermal conductivities of both samples are finally quite comparable and more than doubled compared to non-structured nanocomposites. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:505 / 513
页数:9
相关论文
共 50 条
  • [41] Graphite–graphene hybrid filler system for high thermal conductivity of epoxy composites
    Nayandeep K. Mahanta
    Marcio R. Loos
    Ica Manas Zlocozower
    Alexis R. Abramson
    Journal of Materials Research, 2015, 30 : 959 - 966
  • [42] Preparation and characterization of epoxy-based composite with multilayered structure and high thermal conductivity
    Chen, Lu
    Xiao, Chao
    Tang, Yunlu
    Zhang, Xian
    Zheng, Kang
    Tian, Xingyou
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07):
  • [43] Effect of several surfactants for enhancing electrical conductivity development through silver fillers in an epoxy-based binder
    Nakazawa, Shiho
    Inoue, Masahiro
    2019 IEEE CPMT SYMPOSIUM JAPAN (ICSJ), 2019, : 157 - 161
  • [44] Post-annealing effects of electroless Ni-B-plated MWCNTs on thermal conductivity of epoxy-based composites
    Choi, Jeong-Ran
    Rhee, Kyong Yop
    Park, Soo-Jin
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 31 : 47 - 50
  • [45] Dielectric Spectroscopy of Epoxy-based Nanodielectrics with Metal oxide Fillers
    Patel, R. R.
    Gupta, Nandini
    2010 ANNUAL REPORT CONFERENCE ON ELECTRICAL INSULATION AND DIELECTIC PHENOMENA, 2010,
  • [46] High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers
    Hong, Jung-Pyo
    Yoon, Sung-Woon
    Hwang, Taeseon
    Oh, Joon-Suk
    Hong, Seung-Chul
    Lee, Youngkwan
    Nam, Jae-Do
    THERMOCHIMICA ACTA, 2012, 537 : 70 - 75
  • [47] Enhancement of thermal conductivity in epoxy coatings through the combined addition of expanded graphite and boron nitride fillers
    Isarn, Isaac
    Bonnaud, Leila
    Massagues, Lluis
    Serra, Angels
    Ferrando, Francesc
    PROGRESS IN ORGANIC COATINGS, 2019, 133 : 299 - 308
  • [48] Investigation on the effect of micro and nano fillers on electrical and thermal conductivity of glass epoxy hybrid composites
    Basavarajappa, Bommegowda Kabbala
    Renukappa, Nijagal Marulaiah
    Rajan, Jagannathan Sundara
    INTERNATIONAL JOURNAL OF NANO DIMENSION, 2022, 13 (01) : 126 - 143
  • [49] Detection of thermal damage in epoxy-based composites using laser pumped fluorescence
    Kulowitch, P
    Scott, WR
    NONDESTRUCTIVE CHARACTERIZATION OF MATERIALS XI, 2003, : 545 - 553
  • [50] Effect of Graphite Nanoplatelet Size and Dispersion on the Thermal and Mechanical Properties of Epoxy-Based Nanocomposites
    Agustina, Elsye
    Goak, Jeung Choon
    Lee, Suntae
    Kim, Yongse
    Hong, Sung Chul
    Seo, Yongho
    Lee, Naesung
    NANOMATERIALS, 2023, 13 (08)