Output Power of the Carbon Nanotube-based Rectenna

被引:0
|
作者
Gabrielyan, D. [1 ,2 ]
Safina, O. [2 ]
Churikov, D. [2 ]
Kravchenko, O. [1 ,2 ,3 ,4 ]
Safin, A. [1 ,3 ]
Bulatov, M. [1 ,3 ]
机构
[1] Natl Res Univ MPEI, Moscow, Russia
[2] RAS, Sci & Technol Ctr Unique Instrumentat, Moscow, Russia
[3] RAS, Kotelnikov Inst Radioengn & Elect, Moscow, Russia
[4] RAS, Fed Res Ctr Comp Sci & Control, Moscow, Russia
关键词
D O I
10.1109/piers-spring46901.2019.9017637
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A rectenna is a device that converts electromagnetic waves of the optical range into a direct current. An ability to absorb electromagnetic waves in combination with the small sizes makes rectennas one of the most promising material for broadband optoelectronic devices. Thus, rectennas might have a great opportunity to be applied in new systems for energy harvesting, but it has not been implemented yet because of its weak efficiency. As the latest studies have shown, the arrays based on carbon nanotubes can provide a good performance. We show the working characteristics of the rectenna formed by the array of carbon nanotubes.
引用
收藏
页码:1584 / 1586
页数:3
相关论文
共 50 条
  • [31] A carbon nanotube-based pressure sensor
    Karimov, Kh S.
    Saleem, M.
    Karieva, Z. M.
    Khan, Adam
    Qasuria, T. A.
    Mateen, A.
    PHYSICA SCRIPTA, 2011, 83 (06)
  • [32] Carbon Nanotube-Based Chemical Sensors
    Meyyappan, M.
    SMALL, 2016, 12 (16) : 2118 - 2129
  • [33] Carbon nanotube-based ethanol sensors
    Brahim, Sean
    Colbern, Steve
    Gump, Robert
    Moser, Alex
    Grigorian, Leonid
    NANOTECHNOLOGY, 2009, 20 (23)
  • [34] A carbon nanotube optical rectenna
    Asha Sharma
    Virendra Singh
    Thomas L. Bougher
    Baratunde A. Cola
    Nature Nanotechnology, 2015, 10 : 1027 - 1032
  • [35] Single wall carbon nanotube based optical rectenna
    Tizani, Lina
    Abbas, Yawar
    Yassin, Ahmed Mahdy
    Mohammad, Baker
    Rezeq, Moh'd
    RSC ADVANCES, 2021, 11 (39) : 24116 - 24124
  • [36] Repeater Insertion to Reduce Delay and Power in Copper and Carbon Nanotube-Based Nanointerconnects
    Zhao, Wen-Sheng
    Liu, Peng-Wei
    Yu, Huan
    Hu, Yue
    Wang, Gaofeng
    Swaminathan, Madhavan
    IEEE ACCESS, 2019, 7 : 13622 - 13633
  • [37] Spectral response of carbon nanotube-based device
    Wu Ying
    Zhang Jun
    Zhang Xiaoyun
    Li Hong
    Zhou Zhaoying
    Bai Junjie
    Liu Yu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2014, 228 (02) : 104 - 107
  • [38] Carbon nanotube-based biomaterials for orthopaedic applications
    Aoki, Kaoru
    Ogihara, Nobuhide
    Tanaka, Manabu
    Haniu, Hisao
    Saito, Naoto
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (40) : 9227 - 9238
  • [39] Hydrogenated carbon nanotube-based spin caloritronics
    Zeng, Hong-Li
    Guo, Yan-Dong
    Yan, Xiao-Hong
    Zhou, Jie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (32) : 21507 - 21513
  • [40] Carbon nanotube-based electrodes for flexible supercapacitors
    Sheng Zhu
    Jiangfeng Ni
    Yan Li
    Nano Research, 2020, 13 : 1825 - 1841