Review of current progress in inorganic hole-transport materials for perovskite solar cells

被引:161
|
作者
Singh, Rahul [1 ]
Singh, Pramod K. [2 ]
Bhattacharya, B. [3 ]
Rhee, Hee-Woo [1 ]
机构
[1] Sogang Univ, Dept Chem & Biomol Engn, Polymer Mat Lab, 35 Baekbeom Ro, Seoul 121742, South Korea
[2] Sharda Univ, Sch Basic Sci & Res, Mat Res Lab, G Noida 201310, India
[3] Banaras Hindu Univ, Dept Phys MMV, Varanasi 221005, Uttar Pradesh, India
关键词
Organic/inorganic perovskite; Copper; Nickel; Molybdenum; Graphene; Inorganic materials; CARBON COUNTER ELECTRODE; PROCESSED COPPER IODIDE; HIGH-PERFORMANCE; CONDUCTOR-FREE; HIGHLY EFFICIENT; LOW-TEMPERATURE; LARGE-AREA; GRAPHENE OXIDE; LOW-COST; HALIDE PEROVSKITES;
D O I
10.1016/j.apmt.2018.12.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Plenty of options for inorganic electron transport materials (ETMs) for perovskite solar cells (PSCs) are available. However, most hole transport materials (HTMs) is of organic nature. Organic materials are less stable as they are easily degraded by water and oxygen. Developing more variants of inorganic HTM is a major challenge. Till date, many materials have been reported, but their performance has not superseded that of their organic counterparts. In this review article, we look into the various inorganic HTMs that are available and analyze their performance. Apart from stability, their performance is also a concern for reproducible parameters of device performance. CuSCN, NiOx and MoS2 based PSCs are highly stable devices, maintaining power conversion efficiency (PCEs) over 20% whereas, number of devices made from Cul, CuOx, CuS, CuGaO2 and MoOx but shows low PCEs below 20%. Recently, HTM-free carbon/CNTs/rGO based PSCs shows promises for commercialization. Inorganic HTMs is overcoming the stability and cost issue over organic HTMs, various techniques, their novelty is shown in this work which will contribute in paving a path for synthesizing the ideal inorganic HTM for PSCs. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:175 / 200
页数:26
相关论文
共 50 条
  • [31] Doping organic hole-transport materials for high-performance perovskite solar cells
    Dongmei He
    Shirong Lu
    Juan Hou
    Cong Chen
    Jiangzhao Chen
    Liming Ding
    Journal of Semiconductors, 2023, (02) : 9 - 13
  • [32] Inorganic hole transport layers in inverted perovskite solar cells: A review
    Arumugam, Gowri Manohari
    Karunakaran, Santhosh Kumar
    Liu, Chong
    Zhang, Cuiling
    Guo, Fei
    Wu, Shaohang
    Mai, Yaohua
    NANO SELECT, 2021, 2 (06): : 1081 - 1116
  • [33] Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review
    Shariatinia, Zahra
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 119
  • [34] Perovskite/Graphene Solar Cells without a Hole-Transport Layer
    Ishikawa, Ryousuke
    Watanabe, Sho
    Yamazaki, Sohei
    Oya, Tomoya
    Tsuboi, Nozomu
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (01): : 171 - 175
  • [35] Architecture of the Interface between the Perovskite and Hole-Transport Layers in Perovskite Solar Cells
    Moriya, Masahiro
    Hirotani, Daisuke
    Ohta, Tsuyoshi
    Ogomi, Yuhei
    Shen, Qing
    Ripolles, Teresa S.
    Yoshino, Kenji
    Toyoda, Taro
    Minemoto, Takashi
    Hayase, Shuzi
    CHEMSUSCHEM, 2016, 9 (18) : 2634 - 2639
  • [36] Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials
    Park, Helen Hejin
    NANOMATERIALS, 2022, 12 (01)
  • [37] Core Structure Engineering in Hole-Transport Materials to Achieve Highly Efficient Perovskite Solar Cells
    Ji, Yu
    He, Bizu
    Lu, Huiqiang
    Xu, Jing
    Wang, Rui
    Jin, Yanzi
    Zhong, Cheng
    Shan, Yahan
    Wu, Fei
    Zhu, Linna
    CHEMSUSCHEM, 2019, 12 (07) : 1374 - 1380
  • [38] Hole-transport materials based on β-cyanodiarylethene core structure for efficient inverted perovskite solar cells
    He, Rui
    Sun, Hao
    Zeng, Ye
    Gao, Xing
    Yan, Tao
    Wu, Fei
    Zhu, Linna
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (31) : 12099 - 12105
  • [39] Molecular engineering of simple carbazole-arylamine hole-transport materials for perovskite solar cells
    Liu, Xuepeng
    Ma, Shuang
    Mateen, Muhammad
    Shi, Pengju
    Liu, Cheng
    Ding, Yong
    Cai, Molang
    Guli, Mina
    Nazeeruddin, Mohammad Khaja
    Dai, Songyuan
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (04) : 1875 - 1882
  • [40] Spiro-linked organic small molecules as hole-transport materials for perovskite solar cells
    Gangala, Sivakumar
    Misra, Rajneesh
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (39) : 18750 - 18765