On strongly dccr* modules

被引:0
|
作者
Naji, Osama A. [1 ]
Ozen, Mehmet [1 ]
Tekir, Unsal [2 ]
机构
[1] Sakarya Univ, Dept Math, Sakarya, Turkey
[2] Marmara Univ, Dept Math, Istanbul, Turkey
关键词
Strongly dccr* modules; perfect rings; strongly special modules; Nakayama's Lemma; PRIME SUBMODULES; ACC;
D O I
10.1142/S021949882250195X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study the concept of strongly dccr* modules. Strongly dccr* condition generalizes the class of Artinian modules and it is stronger than dccr* condition. Let R be a commutative ring with nonzero identity and M a unital R-module. A module M is said to be strongly dccr* if for every submodule N of M and every sequence of elements (a(i)) of R, the descending chain of submodules a(1)N superset of a(1)a(2)N superset of ... superset of a(1)a(2 )...( )a(n) N superset of .... of M is stationary. We give many examples and properties of strongly (lax*. Moreover, we characterize strongly dccr* in terms of some known class of rings and modules, for instance in perfect rings, strongly special modules and principally cogenerately modules. Finally, we give a version of Union Theorem and Nakayama's Lemma in light of strongly dccr* concept.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] STRONGLY ε-GORENSTEIN INJECTIVE AND FLAT MODULES
    Gao, Zenghui
    Zhong, Ying
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (01) : 143 - 160
  • [42] Locally strongly homogeneous rings and modules
    Goeters, HP
    HOUSTON JOURNAL OF MATHEMATICS, 2001, 27 (01): : 11 - 33
  • [43] Strongly FP-injective modules
    Li, Weiqing
    Guan, Jiancheng
    Ouyang, Baiyu
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (09) : 3816 - 3824
  • [44] Strongly Gorenstein Flat Dimensions of Modules
    Zhanping WANG
    Haiyu MA
    JournalofMathematicalResearchwithApplications, 2014, 34 (03) : 307 - 315
  • [45] Strongly Gorenstein Flat Modules and Dimensions
    Najib MAHDOU
    Mohammed TAMEKKANTE
    ChineseAnnalsofMathematics(SeriesB), 2011, 32 (04) : 533 - 548
  • [46] Stability of Strongly Gorenstein Flat Modules
    Wang Z.
    Liu Z.
    Vietnam Journal of Mathematics, 2014, 42 (2) : 171 - 178
  • [47] Gorenstein injective and strongly cotorsion modules
    Zhaoyong Huang
    Israel Journal of Mathematics, 2013, 198 : 215 - 228
  • [48] Semistable representations and strongly divisible modules
    Breuil, C
    INVENTIONES MATHEMATICAE, 1999, 136 (01) : 89 - 122
  • [49] On strongly flat and weakly cotorsion modules
    Leonid Positselski
    Alexander Slávik
    Mathematische Zeitschrift, 2019, 291 : 831 - 875
  • [50] Strongly 0-dimensional Modules
    Oral, Kursat Hakan
    Ozkirisci, Neslihan Aysen
    Tekir, Unsal
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (01): : 159 - 165