On strongly dccr* modules

被引:0
|
作者
Naji, Osama A. [1 ]
Ozen, Mehmet [1 ]
Tekir, Unsal [2 ]
机构
[1] Sakarya Univ, Dept Math, Sakarya, Turkey
[2] Marmara Univ, Dept Math, Istanbul, Turkey
关键词
Strongly dccr* modules; perfect rings; strongly special modules; Nakayama's Lemma; PRIME SUBMODULES; ACC;
D O I
10.1142/S021949882250195X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study the concept of strongly dccr* modules. Strongly dccr* condition generalizes the class of Artinian modules and it is stronger than dccr* condition. Let R be a commutative ring with nonzero identity and M a unital R-module. A module M is said to be strongly dccr* if for every submodule N of M and every sequence of elements (a(i)) of R, the descending chain of submodules a(1)N superset of a(1)a(2)N superset of ... superset of a(1)a(2 )...( )a(n) N superset of .... of M is stationary. We give many examples and properties of strongly (lax*. Moreover, we characterize strongly dccr* in terms of some known class of rings and modules, for instance in perfect rings, strongly special modules and principally cogenerately modules. Finally, we give a version of Union Theorem and Nakayama's Lemma in light of strongly dccr* concept.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On Modules Satisfying DCCR
    Taherizadeh, A. J.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2008, 32 (03) : 521 - 525
  • [2] On modules satisfying S-dccr condition
    Ozen, Mehmet
    Naji, Osama A.
    Tekir, Unsal
    Koc, Suat
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (04): : 683 - 696
  • [3] On modules satisfying S-dccr condition
    Mehmet Özen
    Osama A. Naji
    Ünsal Tekir
    Suat Koç
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 683 - 696
  • [4] Strongly lifting modules and strongly dual Rickart modules
    Wang, Yongduo
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 219 - 229
  • [5] Strongly lifting modules and strongly dual Rickart modules
    Yongduo Wang
    Frontiers of Mathematics in China, 2017, 12 : 219 - 229
  • [6] Strongly Jonsson and strongly HS modules
    Oman, Greg
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (08) : 1385 - 1399
  • [7] On Strongly Extending Modules
    Atani, S. Ebrahimi
    Khoramdel, M.
    Hesari, S. Dolati Pish
    KYUNGPOOK MATHEMATICAL JOURNAL, 2014, 54 (02): : 237 - 247
  • [8] STRONGLY BAER MODULES
    Wang, Yongduo
    Cai, Xiong
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2016, 38 (04): : 319 - 326
  • [9] ON STRONGLY ⊕-SUPPLEMENTED MODULES
    Nebiyev, C.
    Pancar, A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (05) : 768 - 775
  • [10] On Strongly Clean Modules
    Zhang, Hongbo
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (04) : 1420 - 1427