A Bayesian approach to the semi-analytic model of galaxy formation: methodology

被引:74
|
作者
Lu, Yu [1 ,2 ]
Mo, H. J. [2 ]
Weinberg, Martin D. [2 ]
Katz, Neal [2 ]
机构
[1] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA
[2] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
methods: numerical; methods: statistical; galaxies: evolution; galaxies: formation; galaxies: luminosity function; mass function; DARK-MATTER HALOES; STAR-FORMATION LAW; STELLAR MASS; HIERARCHICAL FORMATION; BLACK-HOLES; EVOLUTION; DEPENDENCE; ACCRETION; COLLAPSE; SIMULATIONS;
D O I
10.1111/j.1365-2966.2011.19170.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We believe that a wide range of physical processes conspire to shape the observed galaxy population, but we remain unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multidimensional parametrizations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality, the parametric problem of galaxy formation may be profitably tackled with a Bayesian-inference-based approach, which allows one to constrain theory with data in a statistically rigorous way. In this paper, we develop a SAM in the framework of Bayesian inference. We show that, with a parallel implementation of an advanced Markov chain Monte Carlo algorithm, it is now possible to rigorously sample the posterior distribution of the high-dimensional parameter space of typical SAMs. As an example, we characterize galaxy formation in the current A cold dark matter cosmology using the stellar mass function of galaxies as an observational constraint. We find that the posterior probability distribution is both topologically complex and degenerate in some important model parameters, suggesting that thorough explorations of the parameter space are needed to understand the models. We also demonstrate that because of the model degeneracy, adopting a narrow prior strongly restricts the model. Therefore, the inferences based on SAMs are conditional to the model adopted. Using synthetic data tomimic systematic errors in the stellar mass function, we demonstrate that an accurate observational error model is essential to meaningful inference.
引用
收藏
页码:1949 / 1964
页数:16
相关论文
共 50 条
  • [21] Starburst galaxies in semi-analytic models of galaxy formation and evolution
    Wang, Lan
    De Lucia, Gabriella
    Fontanot, Fabio
    Hirschmann, Michaela
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (04) : 4454 - 4465
  • [22] Shark: introducing an open source, free, and flexible semi-analytic model of galaxy formation
    Lagos, Claudia del P.
    Tobar, Rodrigo J.
    Robotham, Aaron S. G.
    Obreschkow, Danail
    Mitchell, Peter D.
    Power, Chris
    Elahi, Pascal J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (03) : 3573 - 3603
  • [23] Non-Gaussian assembly bias from a semi-analytic galaxy formation model
    Marinucci, M.
    Desjacques, V
    Benson, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 524 (01) : 325 - 337
  • [24] Detailed dust modelling in the L-GALAXIES semi-analytic model of galaxy formation
    Vijayan, Aswin P.
    Clay, Scott J.
    Thomas, Peter A.
    Yates, Robert M.
    Wilkins, Stephen M.
    Henriques, Bruno M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (03) : 4072 - 4089
  • [25] Comparing galaxy morphology in hydrodynamical simulation and in semi-analytic model
    Wang, Lan
    Xu, Dandan
    Gao, Liang
    Guo, Qi
    Qu, Yan
    Pan, Jun
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (02) : 2083 - 2091
  • [26] Star formation and metallicity gradients in semi-analytic models of disc galaxy formation
    Fu, Jian
    Kauffmann, Guinevere
    Huang, Mei-ling
    Yates, Robert M.
    Moran, Sean
    Heckman, Timothy M.
    Dave, Romeel
    Guo, Qi
    Henriques, Bruno M. B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 434 (02) : 1531 - 1548
  • [27] A semi-analytic model comparison - gas cooling and galaxy mergers
    De Lucia, Gabriella
    Boylan-Kolchin, Michael
    Benson, Andrew J.
    Fontanot, Fabio
    Monaco, Pierluigi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 406 (03) : 1533 - 1552
  • [28] Galaxy formation in semi-analytic models and cosmological hydrodynamic zoom simulations
    Hirschmann, Michaela
    Naab, Thorsten
    Somerville, Rachel S.
    Burkert, Andreas
    Oser, Ludwig
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 419 (04) : 3200 - 3222
  • [29] Merger History of Central Galaxies in Semi-analytic Models of Galaxy Formation
    Raouf, Mojtaba
    Khosroshahi, Habib G.
    Mamon, Gary A.
    Croton, Darren J.
    Hashemizadeh, Abdolhosein
    Dariush, Ali A.
    ASTROPHYSICAL JOURNAL, 2018, 863 (01):
  • [30] The MillenniumTNG Project: semi-analytic galaxy formation models on the past lightcone
    Barrera, Monica
    Springel, Volker
    White, Simon D. M.
    Hernandez-Aguayo, Cesar
    Hernquist, Lars
    Frenk, Carlos
    Pakmor, Ruediger
    Ferlito, Fulvio
    Hadzhiyska, Boryana
    Delgado, Ana Maria
    Kannan, Rahul
    Bose, Sownak
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 525 (04) : 6312 - 6335