Optimization of a Finite-Difference Scheme for Numerical Solution of the Helmholtz Equation

被引:3
|
作者
Kostin, V. I. [1 ]
Solov'ev, S. A. [1 ]
机构
[1] Russian Acad Sci, Inst Geol & Geophys, Siberian Branch, Novosibirsk 630090, Russia
关键词
Helmholtz equation; finite-difference schemes; numerical dispersion; optimization; MEAD SIMPLEX-METHOD; CONVERGENCE; 9-POINT;
D O I
10.1134/S0965542520040119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we propose an optimization method for a difference scheme for the numerical solution of the Helmholtz equation, applicable for any ratio of the grid steps. In the range of the number of points per wavelength of practical interest, the dispersion error of the optimal scheme is comparable with the error of higher order schemes known in the literature.
引用
收藏
页码:641 / 650
页数:10
相关论文
共 50 条
  • [21] Best finite-difference scheme for the Fisher equation
    Mickens, Ronald E.
    Numerical Methods for Partial Differential Equations, 1994, 10 (05) : 581 - 585
  • [22] On a Finite-Difference Scheme for an Hereditary Oscillatory Equation
    Parovik R.I.
    Journal of Mathematical Sciences, 2021, 253 (4) : 547 - 557
  • [23] A stable finite-difference scheme for the Boussinesq equation
    Scalerandi, M
    Giordano, M
    Delsanto, PP
    Condat, CA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (01): : 1 - 17
  • [24] 21-point Finite-difference Modeling for the Helmholtz Equation
    Cheng, Dong-sheng
    Chen, Jian-jun
    Chen, Bao-wen
    2019 INTERNATIONAL CONFERENCE ON ENERGY, POWER, ENVIRONMENT AND COMPUTER APPLICATION (ICEPECA 2019), 2019, 334 : 301 - 306
  • [25] Numerical analysis of the optimal 9-point finite difference scheme for the Helmholtz equation
    Liu, Jiayuan
    Wu, Tingting
    Zeng, Taishan
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [26] A finite-difference scheme for the numerical solution of parabolized Navier-Stokes equations
    Kopchenov, VI
    Laskin, IN
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1996, 36 (02) : 235 - 245
  • [27] FEATURE OF SOLUTION OF BOLTZMANN FINITE-DIFFERENCE EQUATION
    RUMYANTS.GY
    SOVIET ATOMIC ENERGY-USSR, 1971, 31 (05): : 1276 - &
  • [28] NUMERICAL-SOLUTION OF THE GENERALIZED SERRE EQUATIONS WITH THE MACCORMACK FINITE-DIFFERENCE SCHEME
    DOCARMO, JSA
    SANTOS, FJS
    ALMEIDA, AB
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1993, 16 (08) : 725 - 738
  • [29] Numerical correction for finite-difference solution of the advection-dispersion equation with reaction
    AtaieAshtiani, B
    Lockington, DA
    Volker, RE
    JOURNAL OF CONTAMINANT HYDROLOGY, 1996, 23 (1-2) : 149 - 156
  • [30] Hybrid finite-difference scheme for solving the dispersion equation
    Tsai, TL
    Yang, JC
    Huang, LH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2002, 128 (01): : 78 - 86