Using Tukey's g and h family of distributions to calculate value-at-risk and conditional value-at-risk

被引:0
|
作者
Jimenez, Jose Alfredo [1 ]
Arunachalam, Viswanathan [2 ]
机构
[1] Univ Nacl Colombia, Dept Math, Bogota, Colombia
[2] Univ Los Andes, Dept Math, Bogota, Colombia
来源
JOURNAL OF RISK | 2011年 / 13卷 / 04期
关键词
SKEWNESS; ELONGATION; KURTOSIS;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Generally, when calculating value-at-risk (VaR), little importance is attached to extreme losses because they do not adequately reflect the skewness and kurtosis of the distribution. Moreover, assuming normality in VaR tends to overestimate the VaR values for upper percentiles, while it underestimates VaR for the lower percentiles of values that correspond to more extreme events. We propose to use Tukey's g and h family of distributions for calculating VaR and conditional value-at-risk (CVaR), as this distribution is able to take skewness and kurtosis into account. We also calculate an explicit formula for CVaR using the Cornish-Fisher approximation. An illustrative example is presented to compare our model with other models.
引用
下载
收藏
页码:95 / 116
页数:22
相关论文
共 50 条
  • [21] A residual bootstrap for conditional Value-at-Risk
    Beutner, Eric
    Heinemann, Alexander
    Smeekes, Stephan
    JOURNAL OF ECONOMETRICS, 2024, 238 (02)
  • [22] Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo
    Hong, L. Jeff
    Hu, Zhaolin
    Zhang, Liwei
    INFORMS JOURNAL ON COMPUTING, 2014, 26 (02) : 385 - 400
  • [23] Dependent conditional value-at-risk for aggregate risk models
    Josaphat, Bony Parulian
    Syuhada, Khreshna
    HELIYON, 2021, 7 (07)
  • [24] Credit risk optimization with Conditional Value-at-Risk criterion
    Fredrik Andersson
    Helmut Mausser
    Dan Rosen
    Stanislav Uryasev
    Mathematical Programming, 2001, 89 : 273 - 291
  • [25] Credit risk optimization with Conditional Value-at-Risk criterion
    Andersson, F
    Mausser, H
    Rosen, D
    Uryasev, S
    MATHEMATICAL PROGRAMMING, 2001, 89 (02) : 273 - 291
  • [26] Value-at-risk and extreme value distributions for financial returns
    Tolikas, Konstantinos
    Journal of Risk, 2008, 10 (03): : 31 - 77
  • [27] Use of conditional value-at-risk in stochastic programs with poorly defined distributions
    Krokhmal, P
    Murphey, R
    Pardalos, P
    Uryasev, S
    RECENT DEVELOPMENTS IN COOPERATIVE CONTROL AND OPTIMIZATION, 2004, 3 : 225 - 241
  • [28] On multivariate extensions of the conditional Value-at-Risk measure
    Di Bernardino, E.
    Fernandez-Ponce, J. M.
    Palacios-Rodriguez, F.
    Rodriguez-Grinolo, M. R.
    INSURANCE MATHEMATICS & ECONOMICS, 2015, 61 : 1 - 16
  • [29] Conditional Value-at-Risk: Structure and complexity of equilibria
    Mavronicolas, Marios
    Monien, Burkhard
    THEORETICAL COMPUTER SCIENCE, 2020, 807 : 266 - 283
  • [30] Suboptimality in portfolio conditional value-at-risk optimization
    Jakobsons, Edgars
    JOURNAL OF RISK, 2016, 18 (04): : 1 - 23