Passively sensing SARS-CoV-2 RNA in public transit buses

被引:7
|
作者
Hoffman, Jason S. [1 ]
Hirano, Matthew [2 ]
Panpradist, Nuttada [3 ]
Breda, Joseph [1 ]
Ruth, Parker [1 ,3 ]
Xu, Yuanyi [4 ,5 ]
Lester, Jonathan [6 ]
Nguyen, Bichlien H. [6 ]
Ceze, Luis [1 ]
Patel, Shwetak N. [1 ,2 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci & Engn, 185 E Stevens Way NE, Seattle, WA 98195 USA
[2] Univ Washington, Dept Elect & Comp Engn, 185 Stevens Way, Seattle, WA 98195 USA
[3] Univ Washington, Dept Bioengn, 3720 15th Ave NE, Seattle, WA 98105 USA
[4] Univ Washington, Dept Microbiol, 1705 NE Pacific St, Seattle, WA 98195 USA
[5] Univ Washington, Dept Chem, 4000 15th Ave NE, Seattle, WA 98195 USA
[6] Microsoft Res, 14820 NE 36th St, Redmond, WA 98052 USA
关键词
Passive viral detection; Fabric sensors; Environmental monitoring; Coronavirus; Assay method; TRANSMISSION; COVID-19; AIR; DNA;
D O I
10.1016/j.scitotenv.2021.152790
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Affordably tracking the transmission of respiratory infectious diseases in urban transport infrastructures can inform individuals about potential exposure to diseases and guide public policymakers to prepare timely responses based on geographical transmission in different areas in the city. Towards that end, we designed and tested a method to detect SARS-CoV-2 RNA in the air filters of public buses, revealing that air filters could be used as passive fabric sensors for the detection of viral presence. We placed and retrieved filters in the existing HVAC systems of public buses to test for the presence of trapped SARS-CoV-2 RNA using phenol-chloroform extraction and RT-qPCR. SARS-CoV-2 RNA was detected in 14% (5/37) of public bus filters tested in Seattle, Washington, from August 2020 to March 2021. These results indicate that this sensing system is feasible and that, if scaled, this method could provide a unique lens into the geographically relevant transmission of SARS-CoV-2 through public transit rider vectors, pooling samples of riders over time in a passive manner without installing any additional systems on transit vehicles.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains
    Moreno, Teresa
    Maria Pinto, Rosa
    Bosch, Albert
    Moreno, Natalia
    Alastuey, Andres
    Cruz Minguillon, Maria
    Anfruns-Estrada, Eduard
    Guix, Susana
    Fuentes, Cristina
    Buonanno, Giorgio
    Stabile, Luca
    Morawska, Lidia
    Querol, Xavier
    [J]. ENVIRONMENT INTERNATIONAL, 2021, 147
  • [2] Assessment of SARS-CoV-2 airborne infection transmission risk in public buses
    M.Bertone
    A.Mikszewski
    L.Stabile
    G.Riccio
    G.Cortellessa
    F.R.d'Ambrosio
    V.Papa
    L.Morawska
    G.Buonanno
    [J]. Geoscience Frontiers, 2022, 13 (06) : 229 - 240
  • [3] Assessment of SARS-CoV-2 airborne infection transmission risk in public buses
    MBertone
    AMikszewski
    LStabile
    GRiccio
    GCortellessa
    FRdAmbrosio
    VPapa
    LMorawska
    GBuonanno
    [J]. Geoscience Frontiers, 2022, (06) - 240
  • [4] Assessment of SARS-CoV-2 airborne infection transmission risk in public buses
    Bertone, M.
    Mikszewski, A.
    Stabile, L.
    Riccio, G.
    Cortellessa, G.
    d'Ambrosio, F. R.
    Papa, V.
    Morawska, L.
    Buonanno, G.
    [J]. GEOSCIENCE FRONTIERS, 2022, 13 (06)
  • [5] The SARS-CoV-2 RNA interactome
    Lee, Sungyul
    Lee, Young-suk
    Choi, Yeon
    Son, Ahyeon
    Park, Youngran
    Lee, Kyung-Min
    Kim, Jeesoo
    Kim, Jong-Seo
    Kim, V. Narry
    [J]. MOLECULAR CELL, 2021, 81 (13) : 2838 - +
  • [6] SARS-CoV-2 in Transit: Characterization of SARS-CoV-2 Genomes From Venezuelan Migrants in Colombia
    Patino, Luz H.
    Ballesteros, Nathalia
    Munoz, Marina
    Castaneda, Sergio
    Hernandez, Carolina
    Gomez, Sergio
    Florez, Carolina
    Rico, Angelica
    Pardo, Liseth
    Hernandez-Pereira, Carlos E.
    Delgado-Noguera, Lourdes
    Grillet, Maria E.
    Hernandez, Matthew M.
    Khan, Zenab
    van de Guchte, Adriana
    Dutta, Jayeeta
    Gonzalez-Reiche, Ana S.
    Simon, Viviana
    van Bakel, Harm
    Sordillo, Emilia Mia
    Ramirez, Juan David
    Paniz-Mondolfi, Alberto E.
    [J]. INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2021, 110 : 410 - 416
  • [7] A map of the SARS-CoV-2 RNA structurome
    Andrews, Ryan J.
    Peterson, Jake M.
    Haniff, Hafeez S.
    Chen, Jonathan
    Williams, Christopher
    Grefe, Maison
    Disney, Matthew D.
    Moss, Walter N.
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (02) : 1 - 14
  • [8] The mechanism of RNA capping by SARS-CoV-2
    Park, Gina J.
    Osinski, Adam
    Hernandez, Genaro
    Eitson, Jennifer L.
    Majumdar, Abir
    Tonelli, Marco
    Henzler-Wildman, Katie
    Pawlowski, Krzysztof
    Chen, Zhe
    Li, Yang
    Schoggins, John W.
    Tagliabracci, Vincent S.
    [J]. NATURE, 2022, 609 (7928) : 793 - +
  • [9] SARS-CoV-2 RNA reference materials
    Xu, Li
    Liang, Wen
    Yang, Xue
    Wen, Yanli
    Li, Lanying
    Yang, Zhenzhou
    Li, Yan
    Deng, Min
    Lu, Qing
    Ding, Min
    Ren, Shuzhen
    Sun, Jielin
    Zuo, Xiaolei
    Wang, Lihua
    Cao, Chengming
    Hu, Jun
    Liu, Gang
    Fan, Chunhai
    [J]. CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (22): : 2363 - 2370
  • [10] RNA INTERFERENCE AGAINST SARS-COV-2
    Tolksdorf, Beatrice
    Niemeyer, Daniela
    Heinze, Julian
    Berg, Johanna
    Drosten, Christian
    Kurreck, Jens
    [J]. JOURNAL OF AEROSOL MEDICINE AND PULMONARY DRUG DELIVERY, 2023, 36 (06) : A4 - A4