The mechanism of RNA capping by SARS-CoV-2

被引:76
|
作者
Park, Gina J. [1 ]
Osinski, Adam [1 ]
Hernandez, Genaro [1 ]
Eitson, Jennifer L. [2 ]
Majumdar, Abir [1 ]
Tonelli, Marco [3 ]
Henzler-Wildman, Katie [3 ]
Pawlowski, Krzysztof [1 ,4 ,5 ]
Chen, Zhe [6 ]
Li, Yang [6 ]
Schoggins, John W. [2 ]
Tagliabracci, Vincent S. [1 ,7 ,8 ,9 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Mol Biol, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Microbiol, Dallas, TX 75390 USA
[3] Univ Wisconsin, Dept Biochem, 420 Henry Mall, Madison, WI 53705 USA
[4] Warsaw Univ Life Sci, Inst Biol, Dept Biochem & Microbiol, Warsaw, Poland
[5] Lund Univ, Dept Translat Med, Lund, Sweden
[6] Univ Texas Southwestern Med Ctr Dallas, Dept Biophys, Dallas, TX 75390 USA
[7] Univ Texas Southwestern Med Ctr Dallas, Harold C Simmons Comprehens Canc Ctr, Dallas, TX 75390 USA
[8] Univ Texas Southwestern Med Ctr Dallas, Hamon Ctr Regenerat Sci & Med, Dallas, TX 75390 USA
[9] Univ Texas Southwestern Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
CRYO-EM STRUCTURE; VESICULAR STOMATITIS-VIRUS; MESSENGER-RNA; PROTEIN; POLYMERASE; TRANSCRIPTION; REPLICATION; METHYLATION; 5'-TERMINUS; FEATURES;
D O I
10.1038/s41586-022-05185-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The RNA genome of SARS-CoV-2 contains a 5' cap that facilitates the translation of viral proteins, protection from exonucleases and evasion of the host immune response(1-4). How this cap is made in SARS-CoV-2 is not completely understood. Here we reconstitute the N7- and 2'-O-methylated SARS-CoV-2 RNA cap ((7Me)GpppA(2'- O-Me)) using virally encoded non-structural proteins (nsps). We show that the kinase-like nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain(5) of nsp12 transfers the RNA to the amino terminus of nsp9, forming a covalent RNA-protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers the RNA to GDP, forming the core cap structure GpppA-RNA. The nsp14(6) and nsp16(7) methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication-transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system(8) that the N terminus of nsp9 and the kinase-like active-site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19.
引用
收藏
页码:793 / +
页数:29
相关论文
共 50 条
  • [1] The mechanism of RNA capping by SARS-CoV-2
    Gina J. Park
    Adam Osinski
    Genaro Hernandez
    Jennifer L. Eitson
    Abir Majumdar
    Marco Tonelli
    Katie Henzler-Wildman
    Krzysztof Pawłowski
    Zhe Chen
    Yang Li
    John W. Schoggins
    Vincent S. Tagliabracci
    Nature, 2022, 609 : 793 - 800
  • [2] The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme
    Walker, Alexander P.
    Fan, Haitian
    Keown, Jeremy R.
    Knight, Michael L.
    Grimes, Jonathan M.
    Fodor, Ervin
    NUCLEIC ACIDS RESEARCH, 2021, 49 (22) : 13019 - 13030
  • [3] A mechanism for SARS-CoV-2 RNA capping and its inhibition by nucleotide analog inhibitors
    Yan, Liming
    Huang, Yucen
    Ge, Ji
    Liu, Zhenyu
    Lu, Pengchi
    Huang, Bo
    Gao, Shan
    Wang, Junbo
    Tan, Liping
    Ye, Sihan
    Yu, Fengxi
    Lan, Weiqi
    Xu, Shiya
    Zhou, Feng
    Shi, Lei
    Guddat, Luke W.
    Gao, Yan
    Rao, Zihe
    Lou, Zhiyong
    CELL, 2022, 185 (23) : 4347 - +
  • [4] A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping
    Romano, Maria
    Ruggiero, Alessia
    Squeglia, Flavia
    Maga, Giovanni
    Berisio, Rita
    CELLS, 2020, 9 (05)
  • [5] The SARS-CoV-2 RNA interactome
    Lee, Sungyul
    Lee, Young-suk
    Choi, Yeon
    Son, Ahyeon
    Park, Youngran
    Lee, Kyung-Min
    Kim, Jeesoo
    Kim, Jong-Seo
    Kim, V. Narry
    MOLECULAR CELL, 2021, 81 (13) : 2838 - +
  • [6] Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2
    Aranda, Juan
    Wieczor, Milosz
    Terrazas, Montserrat
    Brun-Heath, Isabelle
    Orozco, Modesto
    CHEM CATALYSIS, 2022, 2 (05): : 1084 - 1099
  • [7] A map of the SARS-CoV-2 RNA structurome
    Andrews, Ryan J.
    Peterson, Jake M.
    Haniff, Hafeez S.
    Chen, Jonathan
    Williams, Christopher
    Grefe, Maison
    Disney, Matthew D.
    Moss, Walter N.
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (02) : 1 - 14
  • [8] SARS-CoV-2 RNA reference materials
    Xu, Li
    Liang, Wen
    Yang, Xue
    Wen, Yanli
    Li, Lanying
    Yang, Zhenzhou
    Li, Yan
    Deng, Min
    Lu, Qing
    Ding, Min
    Ren, Shuzhen
    Sun, Jielin
    Zuo, Xiaolei
    Wang, Lihua
    Cao, Chengming
    Hu, Jun
    Liu, Gang
    Fan, Chunhai
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (22): : 2363 - 2370
  • [9] RNA INTERFERENCE AGAINST SARS-COV-2
    Tolksdorf, Beatrice
    Niemeyer, Daniela
    Heinze, Julian
    Berg, Johanna
    Drosten, Christian
    Kurreck, Jens
    JOURNAL OF AEROSOL MEDICINE AND PULMONARY DRUG DELIVERY, 2023, 36 (06) : A4 - A4
  • [10] Evaluation of Sample Pooling for the Detection of SARS-CoV-2 RNA Using the Cobas SARS-CoV-2 Test
    McMillen, T.
    Jani, K.
    Babady, E.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2020, 22 (11): : S38 - S38