Minimum Uncertainty JPDA Filters and Coalescence Avoidance for Multiple Object Tracking

被引:0
|
作者
Kaufman, Evan [1 ]
Lovell, T. Alan [2 ]
Lee, Taeyoung [1 ]
机构
[1] George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA
[2] Space Vehicles Directorate, Air Force Res Lab, Kirtland AFB, NM USA
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2016年 / 63卷 / 04期
基金
美国国家科学基金会;
关键词
Data association; JPDAF; Minimum uncertainty; Coalescence; ASSOCIATION;
D O I
10.1007/s40295-016-0092-2
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Two variations of the joint probabilistic data association filter (JPDAF) are derived and simulated in various cases in this paper. First, an analytic solution for an optimal gain that minimizes posterior estimate uncertainty is derived, referred to as the minimum uncertainty JPDAF (M-JPDAF). Second, the coalescence-avoiding JPDAF (C-JPDAF) is derived, which removes coalescence by minimizing a weighted sum of the posterior uncertainty and a measure of similarity between estimated probability densities. Both novel algorithms are tested in much further depth than any prior work to show how the algorithms perform in various scenarios. In particular, the M-JPDAF more accurately tracks objects than the conventional JPDAF in all simulated cases. When coalescence degrades the estimates at too great of a level, and the C-JPDAF is often superior at removing coalescence when its parameters are properly tuned.
引用
收藏
页码:308 / 334
页数:27
相关论文
共 50 条
  • [31] Fully invariant multiple object recognition and tracking using MACH and Kalman filters
    Bone, Peter
    Young, Rupert
    Chatwin, Chris
    OPTICAL PATTERN RECOGNITION XVIII, 2007, 6574
  • [32] Performance Study of Object Tracking with Multiple Kalman Filters in Autonomous Driving Systems
    Medaglini, Alessio
    Bartolini, Sandro
    Ada User Journal, 2023, 44 (04): : 284 - 287
  • [33] Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets
    Saidani, Wissem
    Morsly, Yacine
    Djouadi, Mohand Said
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 25, 2007, 25 : 462 - 467
  • [34] Systematic Analysis of the PMBM, PHD, JPDA and GNN Multi-Target Tracking Filters
    Smith, Julian
    Particke, Florian
    Hiller, Markus
    Thielecke, Joern
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [35] Tracking of multiple maneuvering targets using multiscan JPDA and IMM filtering
    Puranik, Sumedh
    Tugnait, Jitendra K.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2007, 43 (01) : 23 - 35
  • [36] Tracking of multiple maneuvering targets using multiscan JPDA and IMM filtering
    Puranik, S
    Tugnait, JK
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 4096 - 4101
  • [37] Improving Multiple Object Tracking with Single Object Tracking
    Zheng, Linyu
    Tang, Ming
    Chen, Yingying
    Zhu, Guibo
    Wang, Jinqiao
    Lu, Hanqing
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2453 - 2462
  • [38] Adaptive suboptimal tracking under bounded Lipshitz uncertainty in a discrete minimum-phase object
    Sokolov, V. F.
    AUTOMATION AND REMOTE CONTROL, 2017, 78 (10) : 1775 - 1789
  • [39] Adaptive suboptimal tracking under bounded Lipshitz uncertainty in a discrete minimum-phase object
    V. F. Sokolov
    Automation and Remote Control, 2017, 78 : 1775 - 1789
  • [40] Object tracking via uncertainty minimization
    Akhriev, Albert
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, PT 2, 2007, 4842 : 592 - 601