Hybrid structures applied to modules over semirings

被引:14
|
作者
Muhiuddin, G. [1 ]
John, J. Catherine Grace [2 ]
Elavarasan, B. [2 ]
Jun, Y. B. [3 ]
Porselvi, K. [2 ]
机构
[1] Univ Tabuk, Dept Math, Tabuk, Saudi Arabia
[2] Karunya Inst Technol & Sci, Dept Math, Coimbatore 641114, Tamil Nadu, India
[3] Gyeongsang Natl Univ, Dept Math Educ, Jinju, South Korea
关键词
Hybrid semirings; hybrid X-semimodules; fully idempotent hybrid ideals; t-pure hybrid ideals; weakly regular; FUZZY IDEALS;
D O I
10.3233/JIFS-211751
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The concept of a hybrid structure in X-semimodules, where X is a semiring, is introduced in this paper. The notions of hybrid subsemimodule and hybrid right (resp., left) ideals are defined and discussed in semirings. We investigate the representations of hybrid subsemimodules and hybrid ideals using hybrid products. We also get some interesting results on t-pure hybrid ideals in X. Furthermore, we show how hybrid products and hybrid intersections are linked. Finally, the characterization theorem is proved in terms of hybrid structures for fully idempotent semirings.
引用
收藏
页码:2521 / 2531
页数:11
相关论文
共 50 条
  • [41] NONBIJECTIVE IDEMPOTENTS PRESERVERS OVER SEMIRINGS
    Orel, Marko
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (04) : 805 - 818
  • [42] Frobenius and Dieudonne theorems over semirings
    Beasley, Leroy B.
    Guterman, Alexander E.
    Lee, Sang-Gu
    Song, Seok-Zun
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (01): : 19 - 34
  • [43] Inversion of Matrices over Boolean Semirings
    Sirasuntorn, N.
    Sombatboriboon, S.
    Udomsub, N.
    THAI JOURNAL OF MATHEMATICS, 2009, 7 (01): : 105 - 113
  • [44] Permutability of matrices over bipotent semirings
    Aird, Thomas
    Kambites, Mark
    SEMIGROUP FORUM, 2022, 104 (03) : 540 - 560
  • [45] Determinantal identities over commutative semirings
    Poplin, PL
    Hartwig, RE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 : 99 - 132
  • [46] Permutability of matrices over bipotent semirings
    Thomas Aird
    Mark Kambites
    Semigroup Forum, 2022, 104 : 540 - 560
  • [47] On strongly invertible matrices over semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (12): : 2501 - 2511
  • [48] On the applicability to semirings of two theorems from the theory of rings and modules
    S. N. Il’in
    Mathematical Notes, 2008, 83 : 492 - 499
  • [49] On the applicability to semirings of two theorems from the theory of rings and modules
    Il'in, S. N.
    MATHEMATICAL NOTES, 2008, 83 (3-4) : 492 - 499
  • [50] The structures of dual modules over formal triangular matrix rings
    Mao, Lixin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (3-4): : 367 - 380