A remarkable representation of the Clifford group

被引:0
|
作者
Bengtsson, Ingemar [1 ]
机构
[1] Stockholm Univ, S-10691 Stockholm, Sweden
来源
ADVANCES IN QUANTUM THEORY | 2011年 / 1327卷
关键词
Heisenberg group; MUTUALLY UNBIASED BASES; EQUIANGULAR LINES;
D O I
10.1063/1.3567433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The finite Heisenberg group knows when the dimension of Hilbert space is a square number. Remarkably, it then admits a representation such that the entire Clifford-group the automorphism group of the Heisenberg group-is represented by monomial phase-permutation matrices. This has a beneficial influence on the amount of calculation that must be done to find Symmetric Informationally Complete POVMs. I make some comments on the equations obeyed by the absolute values of the components of the SIC vectors, and on the fact that the representation partly suggests a preferred tensor product structure.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 50 条
  • [21] On Clifford representation of Hopf algebras and Fierz identities
    RodriguezRomo, S
    FOUNDATIONS OF PHYSICS, 1996, 26 (11) : 1457 - 1468
  • [22] Demonstration representation and tensor products of Clifford algebras
    N. G. Marchuk
    Proceedings of the Steklov Institute of Mathematics, 2015, 290 : 143 - 154
  • [23] A REMARKABLE REPRESENTATION OF THE WEAK AND ELECTROMAGNETIC LAGRANGIAN
    MATTHEWS, PT
    SALAM, A
    PHYSICS LETTERS, 1964, 8 (05): : 357 - 358
  • [24] Application of Clifford Algebra on Group Theory
    Inamdar, Farooqhusain
    Hasan, S. N.
    CONTEMPORARY MATHEMATICS, 2024, 5 (02): : 1 - 11
  • [25] Clifford Algebra of Spacetime and the Conformal Group
    C. Castro
    M. Pavšič
    International Journal of Theoretical Physics, 2003, 42 : 1693 - 1705
  • [26] Restricting the Clifford extensions of a pointed group
    Coconet, Tiberiu
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2014, 59 (03): : 269 - 277
  • [27] Clifford algebra of spacetime and the conformal group
    Castro, C
    Pavsic, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (08) : 1693 - 1705
  • [28] Clifford Group Equivariant Neural Networks
    Ruhe, David
    Brandstetter, Johannes
    Forre, Patrick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [29] Learning and testing algorithms for the Clifford group
    Low, Richard A.
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [30] GENERALIZED CLIFFORD CORRESPONDENCES FOR GROUP CHARACTERS
    DADE, EC
    MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (01) : 19 - 39