Multi-feature kernel discriminant dictionary learning for classification in Alzheimer's disease

被引:0
|
作者
Li, Qing [1 ]
Wu, Xia [1 ]
Xu, Lele [1 ]
Yao, Li [1 ]
Chen, Kewei [2 ,3 ]
机构
[1] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing, Peoples R China
[2] Banner Alzheimers Inst, Phoenix, AZ USA
[3] Banner Good Samaritan PET Ctr, Phoenix, AZ USA
基金
中国国家自然科学基金;
关键词
Alzheimer's disease (AD); Mufti-modality Neuroimaging data; Multiple kernel learning; Discriminant dictionary; MILD COGNITIVE IMPAIRMENT; PREDICTION; MRI; AD; REGRESSION; VOLUME;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Classification of Alzheimer 's disease (AD) from normal control (NC) is important for possible disease abnormality identification, intervention and even possible prevention. The current study focused on distinguishing AD from NC based on the multi-feature kernel supervised within-class similarity discriminative dictionary learning algorithm (MKSCDDL) we introduced previously, which has been derived outperformance in face recognition. Structural magnetic resonance imaging (sMRI), fluorodeoxyglucose (FDG) positron emission tomography (PET) and florbetapir-PET data from the Alzheimer's disease Neuroimaging Initiative (ADNI) database were adopted for classification between AD and NC (113 AD patients and 117 NC subjects). Adopting MKSCDDL, not only the classification accuracy achieved 98.18% for AD vs. NC, which were superior to the results of some other state-of-the-art approaches (MKL, JRC, and mSRC), but also testing time achieved outperforming results. The MKSCDDL procedure was a promising tool in assisting early diseases diagnosis using neuroimaging data.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 50 条
  • [41] Birdsong classification based on multi-feature fusion
    Na Yan
    Aibin Chen
    Guoxiong Zhou
    Zhiqiang Zhang
    Xiangyong Liu
    Jianwu Wang
    Zhihua Liu
    Wenjie Chen
    Multimedia Tools and Applications, 2021, 80 : 36529 - 36547
  • [42] Birdsong classification based on multi-feature fusion
    Yan, Na
    Chen, Aibin
    Zhou, Guoxiong
    Zhang, Zhiqiang
    Liu, Xiangyong
    Wang, Jianwu
    Liu, Zhihua
    Chen, Wenjie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (30) : 36529 - 36547
  • [43] Multi-feature query language for image classification
    Pein, Raoul Pascal
    Lu, Joan
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 2533 - 2541
  • [44] A Multi-Feature Fusion Based on Transfer Learning for Chicken Embryo Eggs Classification
    Huang, Lvwen
    He, Along
    Zhai, Mengqun
    Wang, Yuxi
    Bai, Ruige
    Nie, Xiaolin
    SYMMETRY-BASEL, 2019, 11 (05):
  • [45] A deceptive reviews detection model: Separated training of multi-feature learning and classification
    Cao, Ning
    Ji, Shujuan
    Chiu, Dickson K. W.
    Gong, Maoguo
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [46] Complex matrix and multi-feature collaborative learning for polarimetric SAR image classification
    Shi, Junfei
    Wang, Wei
    Jin, Haiyan
    He, Tiansheng
    APPLIED SOFT COMPUTING, 2023, 134
  • [47] HSRRS Classification Method Based on Deep Transfer Learning And Multi-Feature Fusion
    Wang, Ziteng
    Li, Zhaojie
    Wang, Yu
    Li, Wenmei
    Yang, Jie
    Ohtsuki, Tomoaki
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [48] Exclusive feature selection and multi-view learning for Alzheimer's Disease
    Li, Jiaye
    Wu, Lin
    Wen, Guoqiu
    Li, Zhi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 64
  • [49] Sparse Discriminative Feature Selection for Multi-class Alzheimer's Disease Classification
    Zhu, Xiaofeng
    Suk, Heung-Il
    Shen, Dinggang
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2014), 2014, 8679 : 157 - 164
  • [50] Erratum to: Multi-view feature selection and classification for Alzheimer’s Disease Diagnosis
    Mingxing Zhang
    Yang Yang
    Fumin Shen
    Hanwang Zhang
    Yuan Wang
    Multimedia Tools and Applications, 2017, 76 : 10777 - 10778