Nonlocal isoperimetric inequalities for Kolmogorov-Fokker-Planck operators

被引:10
|
作者
Garofalo, Nicola [1 ]
Tralli, Giulio [1 ]
机构
[1] Univ Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, Padua 35131, Italy
关键词
Kolmogorov operator; Non-symmetric semigroups; Nonlocal isoperimetric inequalities; SOBOLEV;
D O I
10.1016/j.jfa.2020.108591
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish optimal isoperimetric inequalities for a nonlocal perimeter adapted to the fractional powers of a class of Kolmogorov-Fokker-Planck operators which are of interest in physics. These operators are very degenerate and do not possess a variational structure. The prototypical example was introduced by Kolmogorov in his 1938 paper on Brownian motion and the theory of gases. Our work has been influenced by ideas of M. Ledoux in the local case. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] Pointwise and weighted Hessian estimates for Kolmogorov–Fokker–Planck-type operators
    Abhishek Ghosh
    Vivek Tewary
    Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 (2): : 663 - 701
  • [42] Pointwise and weighted Hessian estimates for Kolmogorov-Fokker-Planck-type operators
    Ghosh, Abhishek
    Tewary, Vivek
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (02) : 663 - 701
  • [43] Superposition principle for non-local Fokker-Planck-Kolmogorov operators
    Roeckner, Michael
    Xie, Longjie
    Zhang, Xicheng
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 178 (3-4) : 699 - 733
  • [44] Fokker–Planck–Kolmogorov Equations with a Parameter
    V. I. Bogachev
    S. V. Shaposhnikov
    Doklady Mathematics, 2023, 108 : 357 - 362
  • [45] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    MATRIX AND TENSOR QUARTERLY, 1975, 25 (04): : 150 - &
  • [46] PARALLELIZING THE KOLMOGOROV FOKKER PLANCK EQUATION
    Gerardo-Giorda, Luca
    Minh-Binh Tran
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 395 - 420
  • [47] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    MATRIX AND TENSOR QUARTERLY, 1975, 26 (02): : 61 - 62
  • [48] Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity
    E. A. Levchenko
    A. Yu. Trifonov
    A. V. Shapovalov
    Russian Physics Journal, 2017, 60 : 284 - 291
  • [49] Log-Sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations
    V. I. Bogachev
    A. V. Shaposhnikov
    S. V. Shaposhnikov
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [50] Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
    Shapovalov, Alexander V.
    Rezaev, Roman O.
    Trifonov, Andrey Yu.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3