Single-atom gating of quantum-state superpositions

被引:30
|
作者
Moon, Christopher R. [1 ]
Lutz, Christopher P. [2 ]
Manoharan, Hari C. [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphys930
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ultimate miniaturization of electronic devices will probably require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space-or Hilbert space-is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here, we show that an individual atom inside a designed quantum corral(1) can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom(2), we demonstrate how single spins and quantum mirages(3) can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum-state manipulation at the spatial limit of condensed matter.
引用
收藏
页码:454 / 458
页数:5
相关论文
共 50 条
  • [41] Quantum-state discrimination
    Roa, L
    Retamal, JC
    Saavedra, C
    PHYSICAL REVIEW A, 2002, 66 (01): : 4
  • [42] Quantum-state estimation
    Hradil, Z.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1997, 55 (03):
  • [43] SINGLE-ATOM EXPERIMENTS AND THE TEST OF FUNDAMENTAL QUANTUM PHYSICS
    WALTHER, H
    TOPICS IN APPLIED PHYSICS, 1992, 70 : 37 - 56
  • [44] Removal of single-atom optical bistability by quantum fluctuations
    A. V. Kozlovskii
    A. N. Oraevskii
    Journal of Experimental and Theoretical Physics, 1999, 88 : 1095 - 1101
  • [45] The Single-Atom Transistor: Quantum Electronics at Room Temperature
    Obermair, Christian
    Xie, Fangqing
    Schimmel, Thomas
    Schimmel, Thomas
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 439 - 441
  • [46] Removal of single-atom optical bistability by quantum fluctuations
    Kozlovskii, AV
    Oraevskii, AN
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (06) : 1095 - 1101
  • [47] Single-atom quantum control of macroscopic mechanical oscillators
    Bariani, F.
    Otterbach, J.
    Tan, Huatang
    Meystre, P.
    PHYSICAL REVIEW A, 2014, 89 (01):
  • [48] Single-atom edgelike states via quantum interference
    Pelegri, G.
    Polo, J.
    Turpin, A.
    Lewenstein, M.
    Mompart, J.
    Ahufinger, V.
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [49] Single-atom quantum memory with degenerate atomic levels
    Reshetov, V. A.
    Popov, E. N.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (17)
  • [50] Quantum-state tomography of single-photon entangled states
    Burch, E. T.
    Henelsmith, C.
    Larson, W.
    Beck, M.
    PHYSICAL REVIEW A, 2015, 92 (03):