On Lebesgue Measure of Integral Self-Affine Sets

被引:5
|
作者
Bondarenko, Ievgen V. [1 ]
Kravchenko, Rostyslav V. [2 ]
机构
[1] Natl Taras Shevchenko Univ Kiev, Kiev, Ukraine
[2] Texas A&M Univ, College Stn, TX USA
基金
美国国家科学基金会;
关键词
Self-affine set; Tile; Graph-directed system; Self-similar action; TILES; SYSTEMS; R(N);
D O I
10.1007/s00454-010-9306-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let A be an expanding integer n x n matrix and D be a finite subset of Z(n). The self-affine set T = T (A, D) is the unique compact set satisfying the equality A(T) = boolean OR(d is an element of D) (T + d). We present an effective algorithm to compute the Lebesgue measure of the self-affine set T, the measure of the intersection T boolean AND (T + u) for u is an element of Z(n), and the measure of the intersection of self-affine sets T (A, D(1)) boolean AND T (A, D(2)) for different sets D(1), D(2) is an element of Z(n).
引用
收藏
页码:389 / 393
页数:5
相关论文
共 50 条
  • [21] On the Lipschitz equivalence of self-affine sets
    Luo, Jun Jason
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (05) : 1032 - 1042
  • [22] Self-affine sets with fibred tangents
    Kaenmaki, Antti
    Koivusalo, Henna
    Rossi, Eino
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1915 - 1934
  • [23] DIMENSIONS OF SELF-AFFINE SETS WITH OVERLAPS
    HUA Su Department of Mathematics
    Chinese Annals of Mathematics, 2003, (03) : 275 - 284
  • [24] Dimension spectra of self-affine sets
    Satoshi Takahashi
    Israel Journal of Mathematics, 2002, 127 : 1 - 17
  • [25] On the dimension of triangular self-affine sets
    Barany, Balazs
    Rams, Michal
    Simon, Karoly
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 1751 - 1783
  • [26] THE DIMENSIONS OF INHOMOGENEOUS SELF-AFFINE SETS
    Burrell, Stuart A.
    Fraser, Jonathan M.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 313 - 324
  • [27] Exceptional sets for self-affine fractals
    Falconer, Kenneth
    Miao, Jun
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 : 669 - 684
  • [28] On the connectedness of planar self-affine sets
    Liu, Jing-Cheng
    Luo, Jun Jason
    Xie, Heng-Wen
    CHAOS SOLITONS & FRACTALS, 2014, 69 : 107 - 116
  • [29] DIMENSION OF SELF-AFFINE SETS WITH HOLES
    Ferguson, Andrew
    Jordan, Thomas
    Rams, Michal
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 63 - 88
  • [30] Local structure of self-affine sets
    Bandt, Christoph
    Kaenmaki, Antti
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 1326 - 1337