Haar wavelet method for solution of variable order linear fractional integro-differential equations

被引:10
|
作者
Amin, Rohul [1 ]
Shah, Kamal [2 ,3 ]
Ahmad, Hijaz [4 ,5 ]
Ganie, Abdul Hamid [6 ]
Abdel-Aty, Abdel-Haleem [7 ,8 ]
Botmart, Thongchai [9 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar 25120, Pakistan
[2] Univ Malakand, Dept Math, Khyber Pakhtunkhwa, Pakistan
[3] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[4] Istanbul Ticaret Univ, Informat Technol Applicat & Res Ctr, TR-34445 Istanbul, Turkey
[5] Istanbul Ticaret Univ, Fac Humanities & Social Sci, Dept Math, TR-34445 Istanbul, Turkey
[6] Saudi Elect Univ Abha Male, Coll Sci & Theoret Studies, Basic Sci Dept, Abha 61421, Saudi Arabia
[7] Univ Bisha, Coll Sci, Dept Phys, Bisha 61922, Saudi Arabia
[8] Al Azhar Univ, Fac Sci, Phys Dept, Assiut 71524, Egypt
[9] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 04期
关键词
variable-order fractional calculus; fixed-point theory; Gauss elimination method; Haar wavelet; numerical approximation; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS;
D O I
10.3934/math.2022301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations.
引用
收藏
页码:5431 / 5443
页数:13
相关论文
共 50 条
  • [21] METHOD FOR APPROXIMATE SOLUTION OF LINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    LINZ, P
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (01) : 137 - 144
  • [22] Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations
    Dehestani, Haniye
    Ordokhani, Yadollah
    Razzaghi, Mohsen
    [J]. ENGINEERING WITH COMPUTERS, 2021, 37 (03) : 1791 - 1806
  • [23] Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations
    Haniye Dehestani
    Yadollah Ordokhani
    Mohsen Razzaghi
    [J]. Engineering with Computers, 2021, 37 : 1791 - 1806
  • [24] A new wavelet method for fractional integro-differential equations with ψ-Caputo fractional derivative
    Heydari, M. H.
    Razzaghi, M.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 217 : 97 - 108
  • [25] Haar wavelet method for solution of distributed order time-fractional differential equations
    Amin, Rohul
    Alshahrani, B.
    Mahmoud, Mona
    Abdel-Aty, Abdel-Haleem
    Shah, Kamal
    Deebani, Wejdan
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (03) : 3295 - 3303
  • [26] Haar wavelets method for solving class of coupled systems of linear fractional Fredholm integro-differential equations
    Darweesh, Amer
    Al-Khaled, Kamel
    Abu Al-Yaqeen, Omar
    [J]. HELIYON, 2023, 9 (09)
  • [27] An efficient method for linear fractional delay integro-differential equations
    Peykrayegan, N.
    Ghovatmand, M.
    Skandari, M. H. Noori
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (07):
  • [28] An efficient method for linear fractional delay integro-differential equations
    N. Peykrayegan
    M. Ghovatmand
    M. H. Noori Skandari
    [J]. Computational and Applied Mathematics, 2021, 40
  • [29] Spectral collocation method for linear fractional integro-differential equations
    Ma, Xiaohua
    Huang, Chengming
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (04) : 1434 - 1448
  • [30] A SOLUTION METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS OF CONFORMABLE FRACTIONAL DERIVATIVE
    Bayram, Mustafa
    Hatipoglu, Veysel Fuat
    Alkan, Sertan
    Das, Sebahat Ebru
    [J]. THERMAL SCIENCE, 2018, 22 : S7 - S14